Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling retinitis pigmentosa with iPS cells

09.03.2011
Retinitis pigmentosa (RP) is a cluster of genetically determined eye disorders that cause visual defects such as night blindness and narrowing of the field of vision, due to progressive loss of rod photoreceptors. New work by Zi-Bing Jin and colleagues looks to add a set of powerful new tools for those searching for treatments for RP.

Retinitis pigmentosa (RP) is a cluster of genetically determined eye disorders that cause visual defects such as night blindness and narrowing of the field of vision, due to progressive loss of rod photoreceptors. As many as 45 different genes have been linked to the inheritance of this disease, which suggests diversity in etiology and makes development of a standardized animal model problematic. Thus, despite a range of clinical trials of nutritional and drug-based interventions for RP, the disease remains untreatable. Better platforms for modeling the disease and testing drug candidates in vitro are urgently needed.

New work by Zi-Bing Jin and colleagues in the Laboratory for Retinal Regeneration (Masayo Takahashi, Team Leader) looks to add a set of powerful new tools for those searching for treatments for RP. In an article published in PLoS One, the team reports the generation of induced pluripotent stem cells (iPSCs) from patients carrying mutations in several RP-associated genes, and the subsequent differentiation and characterization of rod photoreceptors from these genetically distinct, patient-derived pluripotent cells.

After obtaining informed consent from five RP patients with distinct mutations in the RP1, RP9, PRPH2, or RHO gene, the team took samples of skin cells and used the fibroblasts as a starting point for generating iPSCs. Using the classic reprogramming cocktail of Oct4, Sox2, Klf4, and c-Myc delivered via a retroviral vector, Jin and colleagues generated cell lines from each patient and verified their conversion by tests for appropriate morphology, genetic and karyotypic integrity, and teratoma formation.

Using these iPSCs, the team next generated photoreceptors carrying the genetic signatures of each of the five patient donors using a previously established stepwise protocol that steered the cells over four months in culture from an undifferentiated ES cell-lie state through retinal progenitor, and photoreceptor precursor stages to the desired rod photoreceptor phenotype. The differentiated cells were shown to express the rod photoreceptor marker rhodopsin at high levels, and to have similar electrophysiological function.

Interestingly, rod photoreceptor cells generated from iPSC colonies carrying RP-linked mutations showed a tendency to degenerate, while cone photoreceptors and bipolar cells derived from the same iPSCs were stable. The mechanisms underlying this instability turned out to be dependent on the affected gene. Rod photoreceptors generated from iPSCs with a mutation in the RP9 gene showed evidence of DNA oxidation, while those from iPSCs with a mutation in the rhodopsin gene showed signs of stress on the endoplasmic reticulum, the site of protein synthesis.

As an initial proof-of-concept test of their suite of RP-specific rod photoreceptors in drug validation, Jin and colleagues examined the effects of antioxidant vitamins in preventing degeneration of these cells in vitro. Ascorbic acid, á-tocopherol, and â–carotene have all been tested in clinical trials as anti-oxidant therapies for RP, but all had not proved very effective. When the team tested these on individual cells lines by treating them with one of the three antioxidants for seven days at around the stage at which rod photoreceptor degeneration occurs, they found that á-tocopherol increased cell survival in the lines generated from two patients both carrying mutations in RP9. The same treatment was ineffective in cells from other patients, and ascorbic acid and â–carotene had no effect in any of the lines. These results, which show the efficacy of á-tocopherol in promoting survival in RP9 rod photoreceptors, highlights the potential of patient-derived induced pluripotent stem cells in the study of disease mechanisms and in vitro testing of treatment approaches.

“Using iPSCs from cells donated by RP patients with different underlying genetic mutations, we were able to show that rod photoreceptors generated from these cells underwent apoptosis in vitro, and showed differing responses in a genetically determined manner to drug treatment,” says Takahashi. “This is one of the first reports to demonstrate that patient-derived iPSCs may be useful in personalized medicine, as differential responses within a genetically diverse study group will tend to be lost in the crowd. Future improvements in differentiation protocols, screening techniques, cost and efficiency and the establishment of methods for isolating photoreceptors may open up new possibilities for the use of these cells in drug screening.”

[ Contact ]
Douglas Sipp : sipp(at)cdb.riken.jp
TEL : +81-78-306-3043
RIKEN CDB, Office for Science Communications and International Affairs

Patient-derived rod photoreceptors undergo degeneration in vitro. The bars show differentiation efficiencies of the iPS cells derived from five retinitis pigmentosa patients.

Journal information
PLoS One. 2011 Feb 10;6(2):e17084.
Modeling retinal degeneration using patient-specific induced pluripotent stem cells.

Jin ZB, Okamoto S, Osakada F, Homma K, Assawachananont J, Hirami Y, Iwata T, Takahashi M.

gro-pr | Research asia research news
Further information:
http://www.cdb.riken.go.jp/en/04_news/articles/11/110210_pigmentosa.html
http://www.researchsea.com

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>