Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MMRF and the Broad Institute to Perform Whole Genome Sequencing of Multiple Myeloma Samples

19.05.2009
The Multiple Myeloma Research Foundation (MMRF) announced today a collaboration with the Broad Institute of MIT and Harvard to systematically uncover the molecular changes underlying multiple myeloma by whole genome sequencing of individual patient tumors. The MMRF will provide both patient samples for analysis as well as funding for the project. All data from this collaboration will be put in the public domain.

“We are delighted to work with the MMRF, which has been a visionary organization in accelerating cancer research for the sake of patients and their families,” said Eric S. Lander, PhD, Director of the Broad Institute.

“Through our work together on this critical pilot project in whole cancer genome sequencing, we hope not only to advance clinical progress for multiple myeloma, but to build knowledge and technical capabilities that can be applied to many other human cancers.”

“Three years ago, the MMRF launched a partnership with the Broad Institute and the Translational Genomics Research Institute — the Multiple Myeloma Genomics Initiative — a comprehensive genome mapping program to identity new targets and eventually new therapies for this incurable disease,” said Kathy Giusti, Founder and CEO of the MMRF, and a multiple myeloma patient. “As part of that larger effort, we are confident that this groundbreaking research will accelerate the development of next-generation treatments to extend the lives of multiple myeloma patients. Additionally, we believe that this work will not only ultimately pave the way to a cure for patients with multiple myeloma, but will benefit patients with other types of cancer.”

The creation of comprehensive catalogs of all commonly occurring cancer mutations is a current approach of several national and international consortia, including The Cancer Genome Atlas (TCGA) led by the US National Institutes of Health and the International Cancer Genome Consortium (ICGC), to understand major tumor types such as leukemia, lung cancer, glioblastoma and others. To date, only a handful of whole cancer genomes have been sequenced and only one has been published.

“The few cancer genomes sequenced to date have been informative, but we need many more to transform cancer research and ultimately cancer therapy,” said Stacey Gabriel, PhD, Co-Director of the Broad Institute’s Genome Sequencing and Analysis Program. “This exciting collaboration with the MMRF will advance these goals by contributing public domain data.”

About the Broad Institute of MIT and Harvard
The Eli and Edythe L. Broad Institute of MIT and Harvard was founded in 2003 to empower this generation of creative scientists to transform medicine with new genome-based knowledge. The Broad Institute seeks to describe all the molecular components of life and their connections; discover the molecular basis of major human diseases; develop effective new approaches to diagnostics and therapeutics; and disseminate discoveries, tools, methods and data openly to the entire scientific community.

Founded by MIT, Harvard and its affiliated hospitals, and the visionary Los Angeles philanthropists Eli and Edythe L. Broad, the Broad Institute includes faculty, professional staff and students from throughout the MIT and Harvard biomedical research communities and beyond, with collaborations spanning over a hundred private and public institutions in more than 40 countries worldwide. For further information about the Broad Institute, go to www.broad.mit.edu.

About the Multiple Myeloma Research Foundation
The Multiple Myeloma Research Foundation (MMRF) was established in 1998 as a 501(c)3 non-profit organization by twin sisters Karen Andrews and Kathy Giusti, soon after Kathy's diagnosis with multiple myeloma. The mission of the MMRF is to relentlessly pursue innovative means that accelerate the development of next-generation multiple myeloma treatments to extend the lives of patients and lead to a cure. As the world's number-one private funder of multiple myeloma research, the MMRF has raised over $120 million since its inception to fund nearly 100 laboratories worldwide. An outstanding 93% of funds raised go toward research and related programming. The MMRF has supported 40 new compounds and approaches in clinical trials and pre- clinical studies and has facilitated 19 clinical trials through its sister organization, the Multiple Myeloma Research Consortium (MMRC). For more information about the MMRF, visit www.themmrf.org.
About the Multiple Myeloma Genomics Initiative
The Multiple Myeloma Genomics Initiative is a genome-mapping program designed to rapidly accelerate progress made against multiple myeloma by significantly improving the understanding of the biology of the disease. Spearheaded by the MMRF, based on analysis of samples from the MMRC’s tissue bank, and conducted in collaboration with the Translational Genomics Research Institute (TGen), the Multiple Myeloma Genomics Initiative comprises several research and discovery efforts spanning the spectrum of genomic science and is the most comprehensive research effort of its kind. Data is placed into the public domain in near-real time via the Multiple Myeloma Genomics Portal, the world's only myeloma-specific repository of genomic data.

Anne Quinn Young | Newswise Science News
Further information:
http://www.themmrf.org
http://www.broad.mit.edu
http://www.myelomagenomics.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>