Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT chemists find an easier way to synthesize new drug candidates

25.06.2010
New method could have a big impact on pharmaceutical business

Some drugs may be more effective the longer they last inside the body. To prevent such drugs from being broken down too rapidly, pharmaceutical manufacturers often attach a fluorine-containing structure called a trifluoromethyl group. However, the processes now used require harsh reaction conditions or only work in a small number of cases, limiting their usefulness for synthesizing new drug candidates for testing.

Now, MIT chemists have designed a new way to attach a trifluoromethyl group to certain compounds, which they believe could allow pharmaceutical companies to create and test new drugs much faster and potentially reduce the cost of drug discovery. The new synthesis, reported in the June 25 issue of Science, could have an immediate impact.

MIT Chemistry Professor Stephen Buchwald, who led the research team, says achieving the synthesis has been a long-standing challenge for chemists. "Some people said it couldn't be done, so that's a good reason to try," says Buchwald, the Camille Dreyfus Professor of Chemistry at MIT.

Eun Jin Cho, a postdoctoral associate in Buchwald's lab, is the lead author of the paper. Other authors are graduate student Todd Senecal, postdoctoral associates Tom Kinzel and Yong Zhang, and former postdoctoral associate Donald Watson, now an assistant professor of chemistry at the University of Delaware.

The trifluoromethyl group (abbreviated CF3) is a component of several commonly used drugs, including the antidepressant Prozac, arthritis medication Celebrex and Januvia, used to treat diabetes symptoms.

When foreign compounds such as drugs enter the body, they get sent to the liver, where they are broken down and shipped on to the kidneys for excretion. However, CF3 groups are hard for the body to break down because they contain three fluorine atoms. "Fluorine is not really a component of things we eat, so the body does not know what to do with it," says Kinzel.

CF3 groups are also a common component of agricultural chemicals such as pesticides. To add a CF3 group to organic (carbon-containing) molecules, chemists often use hydrogen fluoride under conditions that might produce undesired reactions among the many structural components found in complex molecules like pharmaceuticals or agrochemicals.

With the new reaction, the CF3 group can be added at a much later stage of the overall drug synthesis. The reaction can also be used with a broad range of starting materials, giving drug developers much more flexibility in designing new compounds.

Chemists have been trying to find a widely applicable catalytic method to attach CF3 to aryl compounds (compounds containing one or more six-carbon rings) for a couple of decades. Some have achieved different parts of the reaction, but none successfully put all the pieces together to arrive at a method that is applicable for a wide range of different aryl compounds. The major challenge has been finding a suitable catalyst (a molecule that speeds up a reaction) to transfer the CF3 entity from another source to the carbon ring.

CF3– (trifluoromethyl negative ion) tends to be unstable when detached from other molecules, so the catalyst must act quickly to transfer the CF3 group before it decomposes. The MIT team chose to use a catalyst built from palladium, a silvery-white metal commonly used in catalytic converters. The MIT team is not the first to try palladium catalysis for this reaction, but the key to their success was the use of a ligand (a molecule that binds to the metal to stabilize it and hasten the reaction) called BrettPhos, which they had previously developed for other purposes.

Coming up with a useful reaction required much testing of different combinations of palladium, ligand, CF3 source, temperature and other factors. "Everything had to match up," says Senecal.

During the reaction, a CF3 group is transferred from a silicon carrier to the palladium, displacing a chlorine atom. Subsequently, the aryl-CF3 unit is released and the catalytic cycle begins anew. The researchers tried the synthesis with a variety of aryl compounds and achieved yields ranging from 70 to 94 percent of the trifluoromethylated products.

In its current state, the process is too expensive for manufacturing use. For drug discovery, however, it may lower overall costs because it streamlines the entire synthesis process. "For discovery chemistry, the price of the metal is much less important," says Kinzel.

All of the reaction components are commercially available, so pharmaceutical and other companies will immediately be able to use this method.

"This versatile new methodology is directly applicable to drug development," says John Schwab, a program director at the National Institute of Health's National Institute of General Medical Sciences, which partially funded the research. "This is a terrific example of how U.S. healthcare consumers are benefiting from their investment in NIH and in basic, biomedical research."

Source: "The Palladium-Catalyzed Trifluoromethylation of Aryl Chlorides." Eun Jin Cho, Todd D. Senecal, Tom Kinzel, Yong Zhang, Donald A. Watson, Stephen L. Buchwald. Science. 25 June, 2010.

Written by Anne Trafton, MIT News Office

Jennifer Hirsch | EurekAlert!
Further information:
http://www.mit.edu

Further reports about: CF3 CHEMISTRY Science TV catalytic converter drug discovery methyl group

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>