Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Misuse of Sustainability Concept May Lead to Even More Toxic Chemical Materials

30.03.2015

Replacement of toxic chemical components by non-toxic natural analogs is a popular approach in sustainable projects. The study carried out at Zelinsky Institute of Organic Chemistry (Moscow) has shown that partial replacement of chemical compounds by their natural analogs may surprisingly lead to even more toxic products.

The 21st century has presented us with a new scientific challenge - sustainable development. In a battle for sustainable world, humanity seeks to achieve such noble goals as creating a new generation of superior chemical technologies and materials with complete environmental compatibility.


Sustainability concept in chemistry involves replacement of toxic chemical components with bio-compatible analogs in attempt to produce environmentally friendly materials and technologies.

Copyright : Ananikov Laboratory (AnanikovLab.ru)

Chemistry belongs to the sciences for which the concept of non-toxic and waste-free production is of greatest importance. Principles of Green chemistry and Sustainability concept have largely influenced research and development in chemical sciences.

These principles include convenient degradability and minimized toxicity. It is a well-known fact that common chemicals are mainly based on toxic, bio-incompatible substances, which are dangerous for the environment. On the contrary, natural components are biocompatible and have no toxic effects.

Nowadays, chemists undertake numerous efforts to replace toxic substances with corresponding natural analogs, and fortunately, change of just one component sometimes does increase environmental compatibility and reduces harmful impact.

This approach has been used in attempt to create biocompatible ionic liquids. Ionic liquids, also called molten salts, liquid electrolytes, or ionic melts, are salts, which are liquid at temperatures below 100ºC. Spatial directionality and segregated nano-structuring found in ionic liquids provide them with unique properties, one of the most startling of which is the possibility of ‘fine-tuning’: each ionic liquid consists of cation and anion moieties, and by varying them, individually or together, certain properties of the IL can be changed.

Being nonvolatile and nonflammable substances, ionic liquids were believed to become a replacement to traditional volatile and flammable organic solvents, and have found application in such various fields of modern chemistry and technology as organic synthesis, catalysis, electrochemistry, nuclear fuel processing, and others. Originally, ionic liquids were considered as ‘green’ chemicals; however, their biological potential has quickly become evident. Now it is established that ionic liquids may affect life at all levels, from single biomolecules to whole ecosystems.

The study carried out by researchers from Zelinsky Institute of Organic Chemistry evaluates the activity of a recently developed class of amino acid-containing ionic liquids towards cancerous and normal cell cultures. In agreement with the above mentioned sustainability considerations, it was taken for granted that introduction of a natural component (i.e. amino acid) into the ionic liquid would decrease its toxicity and lead to more environmentally friendly chemical derivative.

The researchers replaced the cation and anion in the common ionic liquid [BMIM][BF4] with the natural amino acid Valine to obtain two modified ionic liquids - [BMIM][Val] (bearing Valine as an anion) and [Val-OMe][BF4] (bearing valine as a cation). As one may expect, [BMIM][Val] turned out to be less toxic than the original compound [BMIM][BF4] (see Figure 1). However, [Val-OMe][BF4] demonstrated unexpectedly high toxicity. Surprisingly, replacement of a chemical component [BMIM]+ with a natural cation based on Valine gave noticeably more toxic ionic product.

The authors tested a series of common and amino acid-based ILs and showed that ionic liquids containing anions or cations based on the amino acids Glycine, Alanine, or Valine generally demonstrate cytotoxicity higher or comparable to that of conventional imidazolium-based ILs with inorganic or small organic anions (Figure 2). The authors observed increased toxicity for several ionic systems after incorporation of natural amino acid fragments.

A possible mechanism of action of such amino acid containing ionic liquids involves interactions with membrane transporter proteins employed by cells for amino acid intake. A harmless amino acid, being a part of ionic liquid, helps a biologically active/toxic moiety to enter the cell, where it causes apoptosis, or the programmed cell death. Although the original goal on making a non-toxic ionic liquid was not achieved, these findings suggest potential application of amino acid containing ionic liquids in biology and medicine for targeted drug delivery utilizing tunable properties of ionic liquids.

As Prof. Ananikov commented: "Toxicity and eco-activity of ionic liquids is now a well-addressed topic. As we recently reviewed, achieving superior chemical properties, as well as simultaneously holding environmental compatibility, is a very complicated, but unavoidable direction for task-specific optimization."

To summarize, replacement of toxic chemical components by non-toxic and biocompatible natural analogs is one of the most popular approaches in sustainable projects. The study carried out at Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences (Moscow) has shown that partial replacement of chemical compounds by their natural analogs may surprisingly lead to even more toxic products. The article published in Toxicology Research describes increased toxicity of ionic liquids after incorporation of amino acid residues.


The toxicological study: "Unexpected increase of toxicity of amino acid-containing ionic liquids", by Egorova K. S., Seitkalieva M. M., Posvyatenko A. V., and Ananikov V. P. has been published in Toxicology Research (Royal Society of Chemistry).
Reference: Toxicol. Res., 2015, 4, 152-159, DOI: 10.1039/C4TX00079J
On-line link: http://dx.doi.org/10.1039/C4TX00079J 

The review on task-specific optimization mentioned in the comment:
Egorova K. S., Ananikov V. P., "Toxicity of Ionic Liquids: Eco(cyto)activity as Complicated, but Unavoidable Parameter for Task-Specific Optimization", ChemSusChem, 2014, 7, 336-360. DOI: 10.1002/cssc.201300459; On-line link: http://dx.doi.org/10.1002/cssc.201300459

Associated links
http://AnanikovLab.ru/
http://dx.doi.org/10.1039/C4TX00079J

Ananikov Laboratory | ResearchSEA
Further information:
http://www.researchsea.com

Further reports about: Academy Toxicology acid amino acid biocompatible ionic ionic liquid ionic liquids liquids properties toxic toxicity

More articles from Life Sciences:

nachricht Dangerous pathogens use this sophisticated machinery to infect hosts
20.05.2019 | California Institute of Technology

nachricht When bees are freezing
20.05.2019 | Max-Planck-Institut für Polymerforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

New flying/driving robot developed at Ben-Gurion University of the Negev

20.05.2019 | Power and Electrical Engineering

A new approach to targeting cancer cells

20.05.2019 | Health and Medicine

5G transmission masts made of wood for an attractive and sustainable cityscape

20.05.2019 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>