Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Misuse of Sustainability Concept May Lead to Even More Toxic Chemical Materials

30.03.2015

Replacement of toxic chemical components by non-toxic natural analogs is a popular approach in sustainable projects. The study carried out at Zelinsky Institute of Organic Chemistry (Moscow) has shown that partial replacement of chemical compounds by their natural analogs may surprisingly lead to even more toxic products.

The 21st century has presented us with a new scientific challenge - sustainable development. In a battle for sustainable world, humanity seeks to achieve such noble goals as creating a new generation of superior chemical technologies and materials with complete environmental compatibility.


Sustainability concept in chemistry involves replacement of toxic chemical components with bio-compatible analogs in attempt to produce environmentally friendly materials and technologies.

Copyright : Ananikov Laboratory (AnanikovLab.ru)

Chemistry belongs to the sciences for which the concept of non-toxic and waste-free production is of greatest importance. Principles of Green chemistry and Sustainability concept have largely influenced research and development in chemical sciences.

These principles include convenient degradability and minimized toxicity. It is a well-known fact that common chemicals are mainly based on toxic, bio-incompatible substances, which are dangerous for the environment. On the contrary, natural components are biocompatible and have no toxic effects.

Nowadays, chemists undertake numerous efforts to replace toxic substances with corresponding natural analogs, and fortunately, change of just one component sometimes does increase environmental compatibility and reduces harmful impact.

This approach has been used in attempt to create biocompatible ionic liquids. Ionic liquids, also called molten salts, liquid electrolytes, or ionic melts, are salts, which are liquid at temperatures below 100ºC. Spatial directionality and segregated nano-structuring found in ionic liquids provide them with unique properties, one of the most startling of which is the possibility of ‘fine-tuning’: each ionic liquid consists of cation and anion moieties, and by varying them, individually or together, certain properties of the IL can be changed.

Being nonvolatile and nonflammable substances, ionic liquids were believed to become a replacement to traditional volatile and flammable organic solvents, and have found application in such various fields of modern chemistry and technology as organic synthesis, catalysis, electrochemistry, nuclear fuel processing, and others. Originally, ionic liquids were considered as ‘green’ chemicals; however, their biological potential has quickly become evident. Now it is established that ionic liquids may affect life at all levels, from single biomolecules to whole ecosystems.

The study carried out by researchers from Zelinsky Institute of Organic Chemistry evaluates the activity of a recently developed class of amino acid-containing ionic liquids towards cancerous and normal cell cultures. In agreement with the above mentioned sustainability considerations, it was taken for granted that introduction of a natural component (i.e. amino acid) into the ionic liquid would decrease its toxicity and lead to more environmentally friendly chemical derivative.

The researchers replaced the cation and anion in the common ionic liquid [BMIM][BF4] with the natural amino acid Valine to obtain two modified ionic liquids - [BMIM][Val] (bearing Valine as an anion) and [Val-OMe][BF4] (bearing valine as a cation). As one may expect, [BMIM][Val] turned out to be less toxic than the original compound [BMIM][BF4] (see Figure 1). However, [Val-OMe][BF4] demonstrated unexpectedly high toxicity. Surprisingly, replacement of a chemical component [BMIM]+ with a natural cation based on Valine gave noticeably more toxic ionic product.

The authors tested a series of common and amino acid-based ILs and showed that ionic liquids containing anions or cations based on the amino acids Glycine, Alanine, or Valine generally demonstrate cytotoxicity higher or comparable to that of conventional imidazolium-based ILs with inorganic or small organic anions (Figure 2). The authors observed increased toxicity for several ionic systems after incorporation of natural amino acid fragments.

A possible mechanism of action of such amino acid containing ionic liquids involves interactions with membrane transporter proteins employed by cells for amino acid intake. A harmless amino acid, being a part of ionic liquid, helps a biologically active/toxic moiety to enter the cell, where it causes apoptosis, or the programmed cell death. Although the original goal on making a non-toxic ionic liquid was not achieved, these findings suggest potential application of amino acid containing ionic liquids in biology and medicine for targeted drug delivery utilizing tunable properties of ionic liquids.

As Prof. Ananikov commented: "Toxicity and eco-activity of ionic liquids is now a well-addressed topic. As we recently reviewed, achieving superior chemical properties, as well as simultaneously holding environmental compatibility, is a very complicated, but unavoidable direction for task-specific optimization."

To summarize, replacement of toxic chemical components by non-toxic and biocompatible natural analogs is one of the most popular approaches in sustainable projects. The study carried out at Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences (Moscow) has shown that partial replacement of chemical compounds by their natural analogs may surprisingly lead to even more toxic products. The article published in Toxicology Research describes increased toxicity of ionic liquids after incorporation of amino acid residues.


The toxicological study: "Unexpected increase of toxicity of amino acid-containing ionic liquids", by Egorova K. S., Seitkalieva M. M., Posvyatenko A. V., and Ananikov V. P. has been published in Toxicology Research (Royal Society of Chemistry).
Reference: Toxicol. Res., 2015, 4, 152-159, DOI: 10.1039/C4TX00079J
On-line link: http://dx.doi.org/10.1039/C4TX00079J 

The review on task-specific optimization mentioned in the comment:
Egorova K. S., Ananikov V. P., "Toxicity of Ionic Liquids: Eco(cyto)activity as Complicated, but Unavoidable Parameter for Task-Specific Optimization", ChemSusChem, 2014, 7, 336-360. DOI: 10.1002/cssc.201300459; On-line link: http://dx.doi.org/10.1002/cssc.201300459

Associated links
http://AnanikovLab.ru/
http://dx.doi.org/10.1039/C4TX00079J

Ananikov Laboratory | ResearchSEA
Further information:
http://www.researchsea.com

Further reports about: Academy Toxicology acid amino acid biocompatible ionic ionic liquid ionic liquids liquids properties toxic toxicity

More articles from Life Sciences:

nachricht Cell division in plants: How cell walls are assembled
20.02.2019 | Martin-Luther-Universität Halle-Wittenberg

nachricht Antibiotic resistances spread faster than so far thought
18.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Terahertz wireless makes big strides in paving the way to technological singularity

19.02.2019 | Information Technology

Researchers find trigger that turns strep infections into flesh-eating disease

19.02.2019 | Health and Medicine

Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

19.02.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>