Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missouri Botanical Garden scientists examine toxicity of medicinal plants in Peru

15.12.2011
One Quarter of Water Extracts and Three Quarters of Alcoholic
Extracts From 341 Medicinal Plants Had Toxic Side Effects

Many developing countries rely on traditional medicine as an accessible and affordable treatment option for human maladies. However, until now, scientific data has not existed to evaluate the potential toxicity of medicinal plant species in Peru.

Scientists from the William L. Brown Center of the Missouri Botanical Garden in St. Louis led a study using brine shrimp to determine the toxicity of 341 Northern Peruvian plant species commonly ingested in traditional medicine. Their findings indicated over 24 percent of water extracts made from these plant species and 76 percent of alcoholic extracts from the plants contained elevated toxicity levels.

The results reinforce the need for traditional preparation methods to take different toxicity levels into account when choosing the appropriate solvent for the preparation of a medicinal remedy. The study was funded by grants from the National Institutes of Health MHIRT program through San Diego State University and was published in the Journal of Ethnopharmacology.

Peru is a country rich in biodiversity with a millennia-old tradition of curers using the native flora in medicinal remedies. Traditional medicine is a common practice in the Andean region, where the same plants used years ago are still relied upon today for their healing powers.

“Traditional medicine is an important way to address health issues, but through this study wanted to show that remedies could contain potentially harmful ingredients and need to be prepared with correctly collected, identified and prepared ingredients,” said Dr. Rainer Bussmann, William L. Brown Curator for Economic Botany and director of the William L. Brown Center at the Missouri Botanical Garden. “The William L. Brown Center focuses on this area because plant material used in traditional medicine is marketed in the U.S. more and more, whether direct or via the internet.”

The plants used in this study were collected in the field, at public markets and at the homes of traditional healers, or curanderos, all in Northern Peru. Botanists gathered material from each of 341 traditional medicinal plant species, dried the material and processed it in an industrial grinder. Two samples of plant material were taken from each species. One sample was submerged in 96 percent ethanol for seven days, and the other in boiling distilled water for one day—both traditional preparations of plant extracts. The solvents were evaporated to complete dryness and a concentration of each extract was removed for testing. Plant extracts were then diluted to various concentrations in vials.

Brine shrimp (Artemia sp.), small invertebrates that dwell in sea water and other saline ecosystems, are frequently used in laboratory studies to evaluate toxicity values as a measure of median lethal concentration values, or LC50, as they offer a simple, quick and cost-effective way to test plant extracts. Brine shrimp larvae were submerged in 501 total vials of aqueous and ethanolic plant extract solutions, and scientists recorded their rates of mortality after 24 hours.

Testing of the aqueous extracts showed high toxicity values for 55 of the total plant species, with 18 species having median toxicity values and another 18 species having low toxicity. The alcoholic extracts proved exponentially more toxic, with 220 plant species showing high toxicity values, 43 having median toxicity and 23 showing low toxicity.

“Preparation methods by curanderos are taking this into account, and most traditional remedies such as medicinal teas are made with simple water extracts instead of alcoholic ones, thus avoiding potential toxic effects in patients,” said Bussmann. “However, traditional knowledge about medicinal plant use is rapidly eroding and many of these plant species are threatened with extinction. Roughly four out of five people in developing countries rely on plants for their primary health care, so studies such as this are vital to ensure that the knowledge base of traditional healers is reinforced and expanded for the benefit of future generations.”

“Importantly, during this study, we also discovered that while most cases of extracts made from different collections of one plant species showed the similar toxicity levels, other plant species collected at different times varied from non-toxic to highly toxic,” added Bussmann. “Future studies should investigate whether harvest time, collection locality or use of specific plant parts might contribute to a reduction of toxicity in these frequently-used plants.”

Humans consume thousands of species of plants to meet their basic nutritional needs but only a handful of these plants have received significant study through international agricultural centers. Many remain poorly understood and largely undeveloped, and their wild relatives are threatened with extinction and in need of conservation attention. Stewardship of these valuable plant resources will require rigorous science combined with an approach that respects and values traditional knowledge systems; supports intellectual property mechanisms that equitably compensate all parties; and includes local participatory methods to ensure culturally-sensitive solutions.

The Missouri Botanical Garden’s William L. Brown Center (WLBC) is uniquely positioned to respond to these issues and play a leading role in addressing these problems. The Center is located in one of the largest herbaria in the world, making a wealth of plant data available from collections. Access to advanced scientific methodologies allows more rapid characterization of useful species, chemicals or genes that lead to new nutritional and pharmaceutical products. The Center has access to improved information technologies that facilitate the rapid communication of data and allow repatriation of data to the countries where it is needed to make intelligent decisions about the use of natural resources. Appropriate partnerships between the Center and collaborators in developing countries enable capacity building to ensure that countries have the infrastructure to make sound development and conservation plans. Partnerships between the Center and both national institutions and local communities permit the implementation of integrated conservation and sustainable development programs.

With the William L. Brown Center, the Missouri Botanical Garden is a global leader in discovering, explaining and disseminating information about the diverse and dynamic relationships between people and plants throughout the world. Today, 152 years after opening, the Missouri Botanical Garden is a National Historic Landmark and a center for science, conservation, education and horticultural display. With scientists working in 35 countries on six continents around the globe, the Missouri Botanical Garden has one of the three largest plant science programs in the world and a mission “to discover and share knowledge about plants and their environment in order to preserve and enrich life.”

For general information about the Missouri Botanical Garden, visit www.mobot.org. For more on the William L. Brown Center, visit www.wlbcenter.org.

The Missouri Botanical Garden’s mission is “to discover and share knowledge about plants and their environment in order to preserve and enrich life.” Today, 152 years after opening, the Missouri Botanical Garden is a National Historic Landmark and a center for science, conservation, education and horticultural display.

Karen Hill | EurekAlert!
Further information:
http://www.mobot.org

More articles from Life Sciences:

nachricht To proliferate or not to proliferate
21.03.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Discovery of a Primordial Metabolism in Microbes
21.03.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>