Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missouri Botanical Garden scientists examine toxicity of medicinal plants in Peru

15.12.2011
One Quarter of Water Extracts and Three Quarters of Alcoholic
Extracts From 341 Medicinal Plants Had Toxic Side Effects

Many developing countries rely on traditional medicine as an accessible and affordable treatment option for human maladies. However, until now, scientific data has not existed to evaluate the potential toxicity of medicinal plant species in Peru.

Scientists from the William L. Brown Center of the Missouri Botanical Garden in St. Louis led a study using brine shrimp to determine the toxicity of 341 Northern Peruvian plant species commonly ingested in traditional medicine. Their findings indicated over 24 percent of water extracts made from these plant species and 76 percent of alcoholic extracts from the plants contained elevated toxicity levels.

The results reinforce the need for traditional preparation methods to take different toxicity levels into account when choosing the appropriate solvent for the preparation of a medicinal remedy. The study was funded by grants from the National Institutes of Health MHIRT program through San Diego State University and was published in the Journal of Ethnopharmacology.

Peru is a country rich in biodiversity with a millennia-old tradition of curers using the native flora in medicinal remedies. Traditional medicine is a common practice in the Andean region, where the same plants used years ago are still relied upon today for their healing powers.

“Traditional medicine is an important way to address health issues, but through this study wanted to show that remedies could contain potentially harmful ingredients and need to be prepared with correctly collected, identified and prepared ingredients,” said Dr. Rainer Bussmann, William L. Brown Curator for Economic Botany and director of the William L. Brown Center at the Missouri Botanical Garden. “The William L. Brown Center focuses on this area because plant material used in traditional medicine is marketed in the U.S. more and more, whether direct or via the internet.”

The plants used in this study were collected in the field, at public markets and at the homes of traditional healers, or curanderos, all in Northern Peru. Botanists gathered material from each of 341 traditional medicinal plant species, dried the material and processed it in an industrial grinder. Two samples of plant material were taken from each species. One sample was submerged in 96 percent ethanol for seven days, and the other in boiling distilled water for one day—both traditional preparations of plant extracts. The solvents were evaporated to complete dryness and a concentration of each extract was removed for testing. Plant extracts were then diluted to various concentrations in vials.

Brine shrimp (Artemia sp.), small invertebrates that dwell in sea water and other saline ecosystems, are frequently used in laboratory studies to evaluate toxicity values as a measure of median lethal concentration values, or LC50, as they offer a simple, quick and cost-effective way to test plant extracts. Brine shrimp larvae were submerged in 501 total vials of aqueous and ethanolic plant extract solutions, and scientists recorded their rates of mortality after 24 hours.

Testing of the aqueous extracts showed high toxicity values for 55 of the total plant species, with 18 species having median toxicity values and another 18 species having low toxicity. The alcoholic extracts proved exponentially more toxic, with 220 plant species showing high toxicity values, 43 having median toxicity and 23 showing low toxicity.

“Preparation methods by curanderos are taking this into account, and most traditional remedies such as medicinal teas are made with simple water extracts instead of alcoholic ones, thus avoiding potential toxic effects in patients,” said Bussmann. “However, traditional knowledge about medicinal plant use is rapidly eroding and many of these plant species are threatened with extinction. Roughly four out of five people in developing countries rely on plants for their primary health care, so studies such as this are vital to ensure that the knowledge base of traditional healers is reinforced and expanded for the benefit of future generations.”

“Importantly, during this study, we also discovered that while most cases of extracts made from different collections of one plant species showed the similar toxicity levels, other plant species collected at different times varied from non-toxic to highly toxic,” added Bussmann. “Future studies should investigate whether harvest time, collection locality or use of specific plant parts might contribute to a reduction of toxicity in these frequently-used plants.”

Humans consume thousands of species of plants to meet their basic nutritional needs but only a handful of these plants have received significant study through international agricultural centers. Many remain poorly understood and largely undeveloped, and their wild relatives are threatened with extinction and in need of conservation attention. Stewardship of these valuable plant resources will require rigorous science combined with an approach that respects and values traditional knowledge systems; supports intellectual property mechanisms that equitably compensate all parties; and includes local participatory methods to ensure culturally-sensitive solutions.

The Missouri Botanical Garden’s William L. Brown Center (WLBC) is uniquely positioned to respond to these issues and play a leading role in addressing these problems. The Center is located in one of the largest herbaria in the world, making a wealth of plant data available from collections. Access to advanced scientific methodologies allows more rapid characterization of useful species, chemicals or genes that lead to new nutritional and pharmaceutical products. The Center has access to improved information technologies that facilitate the rapid communication of data and allow repatriation of data to the countries where it is needed to make intelligent decisions about the use of natural resources. Appropriate partnerships between the Center and collaborators in developing countries enable capacity building to ensure that countries have the infrastructure to make sound development and conservation plans. Partnerships between the Center and both national institutions and local communities permit the implementation of integrated conservation and sustainable development programs.

With the William L. Brown Center, the Missouri Botanical Garden is a global leader in discovering, explaining and disseminating information about the diverse and dynamic relationships between people and plants throughout the world. Today, 152 years after opening, the Missouri Botanical Garden is a National Historic Landmark and a center for science, conservation, education and horticultural display. With scientists working in 35 countries on six continents around the globe, the Missouri Botanical Garden has one of the three largest plant science programs in the world and a mission “to discover and share knowledge about plants and their environment in order to preserve and enrich life.”

For general information about the Missouri Botanical Garden, visit www.mobot.org. For more on the William L. Brown Center, visit www.wlbcenter.org.

The Missouri Botanical Garden’s mission is “to discover and share knowledge about plants and their environment in order to preserve and enrich life.” Today, 152 years after opening, the Missouri Botanical Garden is a National Historic Landmark and a center for science, conservation, education and horticultural display.

Karen Hill | EurekAlert!
Further information:
http://www.mobot.org

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>