Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing piece of plant clock found

13.03.2009
Biologists at the University of California, San Diego have identified a key protein that links the morning and evening components of the daily biological clock of plants.

Their discovery, detailed in the March 13 issue of Science, solves a longstanding puzzle about the underlying biochemical mechanisms that control plant clocks and could provide a new way to increase the growth and yield of agricultural crops.

The finding is the first outcome of a larger effort to assemble a complete library of all proteins called transcription factors, which regulate genes, in Arabidopsis, a plant often used as a genetic model.

Scientists previously had identified two primary feedback loops in the plant daily clock – one that detects the onset of light in the morning and another that tracks when light fades in the evening.

"The best way to construct a robust clock would be to connect the loops so that they both communicate that information to each other," said Steve Kay, dean of the Division of Biological Sciences at UC San Diego whose research team made the discovery. "Now a protein we call CHE has provided that link."

CHE, first predicted nearly a decade ago, has proved difficult to find. Multiple backup systems for many important functions in plants, including timekeeping, frustrate efforts to identify the function of an individual molecule or gene.

"In plants there are a lot of redundancies – proteins that do similar things," said Jose Pruneda-Paz, a postdoctoral fellow at UC San Diego and the first author of the study. "In the clock, on top of the redundancies, you have feedback loops that are interconnected. So it's difficult to perturb the system."

Disrupting a protein will fail to reveal its function if the system can compensate for its loss, so the team took a different approach. They sorted through proteins with the ability to bind to DNA, and therefore to regulate genes, and selected candidates mostly likely to be part of a clock: the ones that cycle between abundant and scarce.

Of those cyclical proteins, only CHE stuck specifically to the part of plant DNA that controls a critical component of the morning loop. Further experiments demonstrated that CHE also binds to an evening loop protein providing the missing link.

Pruneda-Paz and his co-authors "solve a major puzzle in our understanding of the plant clock," wrote C. Robertson McClung, professor of biology at Dartmouth College, in a commentary on the article that will appear in the same issue of Science.

Evidence increasingly points to the clock as a critical component of functions growth and the timing of flowering. A recent paper published in Nature by a group at the University of Texas, Austin reports that an altered clock contributes to hybrid vigor, suggesting that targeting clock genes may be a way to improve the growth of crops. "It's going to be a way to come up with rational design for increasing yield in the field," Kay said.

Kay expects the growing catalog of transcription factors to be completed by the end of the year with more than 2,000 entries, he said. "This is going to be a significant resource for the plant science community developed here at UC San Diego."

Susan Brown | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>