Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing piece gets a work over

19.01.2009
Researchers working in Japan have developed a new theory that may explain the activity of two unusual, but vitally important, enzymes that were discovered over 40 years ago.

New pathways for the biological activity of two little-understood enzymes emerge from a theoretical investigation

The enzymes, indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO), known as dioxygenases, are responsible for the cleavage of the essential amino acid, L-tryptophan. Both enzymes contain heme—a metal-containing organic ring structure—to which molecular oxygen is bound before being transferred to L-tryptophan. This important oxidation reaction releases energy into the body in all cells in mammals, but its mechanism is little understood.

Now, Hiroshi Sugimoto and colleagues at the RIKEN SPring-8 Center, Harima, in collaboration with Keiji Morokuma, Lung Wa Chung and colleagues at Kyoto University, have studied the structures of these enzymes and modeled some potential reaction pathways to better understand how they work1.

Recently, crystal structures of IDO (Fig. 1) 2 and TDO with tryptophan or similar compounds were obtained. Surprisingly, these structures showed different active sites for these enzymes compared to other heme systems. Consequently, the researchers concluded that different mechanistic pathways must also be operating for the dioxygenase reaction.

The researchers used a detailed modeling method, called Density Functional Theory, to calculate and evaluate the energy of the starting compounds, products, possible reaction intermediates and transition states. They then used comparisons to provide insight into which reaction pathways are the most energetically favorable and, therefore, which mechanism is most likely to take place in the body.

They found that one proposed mechanism involved a highly distorted transition state, which would lead to a very high energy barrier, making this route doubtful. Instead, they suggest that a new and energetically favorable mechanistic pathway explains the unusual dioxygen activation and oxidation reactions for the enzymes. This proposed mechanism is sharply distinct from other mechanisms for heme-containing oxygenases.

The enzyme-bound oxygen was found to react directly with the electron-rich indole carbon on the tryptophan via either a 2-electron (electrophilic) or 1-electron (radical) transfer pathway. Either of these reactions would lead to the formation of a low-energy intermediate making it a much more realistic possibility. Sugimoto and colleagues are now investigating exactly how oxygen binds to the heme and evaluating the contribution of the enzyme to the mechanism.

“[The research] might also be informative for rational drug design because IDO is emerging as an important new therapeutic target for the treatment of cancer, chronic viral infections, and other diseases characterized by pathological immune suppression,” says Sugimoto.

Reference

1. Chung, L.W., Li, X., Sugimoto, H., Shiro, Y. & Morokuma, K. Density Functional Theory Study on a Missing Piece in Understanding of Heme Chemistry: The Reaction Mechanism for Indoleamine 2,3-Dioxygenase and Tryptophan. Journal of the American Chemical Society 130, 12299–12309 (2008).

2. Sugimoto, H., Oda, S., Otsuki, T., Hino, T., Yoshida, T. & Shiro, Y. Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proceedings of the National Academy of Sciences USA 103, 2611–2616 (2006).

The corresponding author for this highlight is based at the RIKEN Biometal Science Laboratory

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/627/

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>