Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Misplaced Metamorphosis

05.03.2009
Penn Researchers Identify Source of Cells that Spur Aberrant Bone Growth

Researchers at the University of Pennsylvania School of Medicine and the University of Connecticut have pinpointed the source of immature cells that spur misplaced bone growth.

Unexpectedly, the major repository of bone-forming cells originates in blood vessels deep within skeletal muscle and other connective tissues, not from muscle stem cells themselves. The work also shows that cells important in the inflammatory response to injury trigger skeleton-stimulating proteins to transform muscle tissue into bone.

Understanding this process has important implications for understanding the formation of bone not only in FOP, a rare disease in which patients’ muscle cells literally metamorphose to bone, but also in many common disorders of misplaced bone growth such as that following head injury, athletic injury, and spinal cord injury. The findings were published this week in the Journal of Bone & Joint Surgery.

“We always knew that heterotopic, or misplaced, bone growth was supplied by a rich vasculature, but we never suspected that cells from the blood vessels, when triggered by cells from the immune system, could undergo a metamorphosis that becomes a second skeleton,” says senior author Frederick S. Kaplan, M.D., Isaac & Rose Nassau Professor of Orthopaedic Molecular Medicine. “When these components interact pathologically, as in the rare disease FOP, devastating results occur. We want to fix that.”

The researchers used genetically engineered mice with labeled immature, or progenitor, cells to trace specific cell lineages through the process of renegade bone formation, which is induced by skeleton-stimulating molecules called bone morphogenetic proteins (BMPs). The study has important implications for understanding the rare genetic disorder fibrodysplasia ossificans progressiva (FOP), a condition studied by the authors who care for most of the world’s 700 patients with the condition.

In FOP, the body forms a second skeleton as a result of the transformation of normal muscle tissue into normal bone. That change is caused by a mutant gene that encodes a receptor, or switch, for BMPs and was discovered by the Penn scientists in April 2006. In 2007, the Penn group identified the seminal role of inflammation in the metamorphosis, indicting the immune system as a critical trigger in the aberrant bone-forming process.

The current study links the inflammatory response to injury with the responding blood-vessel cells that, in part, orchestrate the switch from muscle to bone. The interaction of blood-vessel cells with immune cells appears to trigger bone formation when the BMP switch is damaged or overactive. While the cells identified from blood-vessel linings in this study are a major contributor to the aberrant bone growth, the researchers say they account for only half of the cells important in the process, suggesting that other critical pools of cells are yet to be identified.

"BMPs regulate a great number of essential physiological processes,” comments co-corresponding author David J. Goldhamer, Ph.D., Associate Professor, The Center for Regenerative Biology at the University of Connecticut. “For this reason, development of therapies for misplaced bone growth that specifically target offending progenitor cell populations is of primary importance in order to minimize collateral effects. Identification of progenitor cells directly involved in heterotopic bone formation is a critical first step toward this goal.”

By identifying the interaction of key cellular and molecular elements in the transformation of muscle to bone, the study points the way to designing more effective treatments for undesirable heterotopic bone formation as well as for engineering new bone where it is desperately needed, such as in congenital malformations, fractures, spinal fusions, and bone loss from tumors.

This work was funded by the International Fibrodysplasia Ossificans Progressiva Association (IFOPA), the Isaac and Rose Nassau Professorship of Orthopaedic Molecular Medicine, the Rita Allen Foundation, the Ian Cali Endowment, the Weldon Family Endowment, the Center for Research in FOP and Related Disorders, the Orthopaedic Research and Education Foundation's Zachary Friedenberg Clinician-Scientist Award, and the National Institutes of Health.

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top ten “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine at Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>