Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mismatch repair protein meets its match

26.03.2012
Mutations in people with cancerous Lynch syndrome prevent a DNA mismatch repair protein from doing its job properly

When the cell’s DNA proofreading system encounters a mismatch in the genome, a number of repair proteins are thrown into action, ripping up the mistake and filling in the correct nucleotides.

One of these proteins, an endonuclease called MutL in bacteria, nicks the error-containing strand of DNA with the help of ATP, the energy currency of the cell. However, the exact mechanism by which ATP regulates the DNA-cutting enzyme has eluded biochemists.

Now, a research team from Japan has shown that ATP physically binds the repair protein, causing a structural rearrangement at the enzyme’s catalytic site that triggers the genetic slicing and dicing.

Led by Kenji Fukui from the RIKEN SPring-8 Center in Harima, the researchers performed a series of structural imaging experiments in the heat-loving bacterium Aquifex aeolicus to tease apart how ATP affects MutL. Using a mass spectrometry technique designed for monitoring conformational changes in proteins, they showed that ATP first binds to one end of the MutL protein. Through a series of physical interactions, this binding then induces structural changes at the opposite end of the protein—where the catalytic site is located—spurring the enzyme into action.

Importantly, the study revealed two novel, highly conserved regions of MutL—one in the ATP-binding region, another in the catalytic region—that are essential for the protein’s DNA cleaving activity. “We were surprised because the newly identified catalytic region had not been thought to be involved in the catalysis of endonucleolytic reaction,” says Fukui.

In the human equivalent of MutL, mutations in this catalytic region are known to cause Lynch syndrome, a heritable form of cancer marked by a faulty DNA mismatch repair system. Consistent with this observation, Fukui and colleagues studied MutL with mutations at the catalytic region and saw a decrease in enzymatic activity. As such, the team’s study could provide a molecular explanation for the repair defect seen in people with that disease. “Dysfunction of MutL endonuclease activity [seems to] be one of the major causes for Lynch syndrome,” Fukui notes.

More fine-scale structures are still needed, however, to fully characterize the ATP-dependent structural rearrangement of the protein in both healthy and mutated forms of MutL. To that end, Fukui is now further probing the protein using x-ray crystallography and other methods. “The precise biochemical characterization of A. aeolicus’s MutL will accelerate the cellular biological studies on human MutL homolog,” Fukui says.

The corresponding author for this highlight is based at the Functomics Integration Research Team, RIKEN SPring-8 Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>