Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mismatch repair protein meets its match

26.03.2012
Mutations in people with cancerous Lynch syndrome prevent a DNA mismatch repair protein from doing its job properly

When the cell’s DNA proofreading system encounters a mismatch in the genome, a number of repair proteins are thrown into action, ripping up the mistake and filling in the correct nucleotides.

One of these proteins, an endonuclease called MutL in bacteria, nicks the error-containing strand of DNA with the help of ATP, the energy currency of the cell. However, the exact mechanism by which ATP regulates the DNA-cutting enzyme has eluded biochemists.

Now, a research team from Japan has shown that ATP physically binds the repair protein, causing a structural rearrangement at the enzyme’s catalytic site that triggers the genetic slicing and dicing.

Led by Kenji Fukui from the RIKEN SPring-8 Center in Harima, the researchers performed a series of structural imaging experiments in the heat-loving bacterium Aquifex aeolicus to tease apart how ATP affects MutL. Using a mass spectrometry technique designed for monitoring conformational changes in proteins, they showed that ATP first binds to one end of the MutL protein. Through a series of physical interactions, this binding then induces structural changes at the opposite end of the protein—where the catalytic site is located—spurring the enzyme into action.

Importantly, the study revealed two novel, highly conserved regions of MutL—one in the ATP-binding region, another in the catalytic region—that are essential for the protein’s DNA cleaving activity. “We were surprised because the newly identified catalytic region had not been thought to be involved in the catalysis of endonucleolytic reaction,” says Fukui.

In the human equivalent of MutL, mutations in this catalytic region are known to cause Lynch syndrome, a heritable form of cancer marked by a faulty DNA mismatch repair system. Consistent with this observation, Fukui and colleagues studied MutL with mutations at the catalytic region and saw a decrease in enzymatic activity. As such, the team’s study could provide a molecular explanation for the repair defect seen in people with that disease. “Dysfunction of MutL endonuclease activity [seems to] be one of the major causes for Lynch syndrome,” Fukui notes.

More fine-scale structures are still needed, however, to fully characterize the ATP-dependent structural rearrangement of the protein in both healthy and mutated forms of MutL. To that end, Fukui is now further probing the protein using x-ray crystallography and other methods. “The precise biochemical characterization of A. aeolicus’s MutL will accelerate the cellular biological studies on human MutL homolog,” Fukui says.

The corresponding author for this highlight is based at the Functomics Integration Research Team, RIKEN SPring-8 Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>