Misfolded proteins: The fundamental problem is aging

A new Northwestern University study reports that protein damage can be detected much earlier than we had thought, long before individuals exhibit symptoms. But the study also suggests if we intervene early enough, the damage could be delayed.

In studying seven different proteins of the worm C. elegans, the researchers discovered that each protein misfolds at the same point: during early adulthood and long before the animal shows any behavioral, or physiological, change. (Each protein had a minor mutation that affects folding.)

The misfolding coincided with the loss of a critical protective cellular mechanism: the ability to activate the heat shock response, an ancient genetic switch that senses damaged proteins and protects cells by preventing protein misfolding.

The results will be published online during the week of Aug. 24 by the Proceedings of the National Academy of Sciences (PNAS).

“I didn't expect the results to be so dramatic, for these different proteins that vary in concentration and are expressed in diverse tissues to collapse at the same time,” said lead researcher Richard I. Morimoto. “This suggests the animal's protective cellular stress response becomes deficient during aging.”

Could the damaging events of protein misfolding be prevented or at least delayed?

To find out, the researchers gave the animals the equivalent of a vitamin, boosting the heat shock response early in the animal's development, prior to protein damage. Now, instead of misfolding around day four, the equivalent of early adulthood in the worm, the proteins didn't start misfolding until day 12. (Behavioral changes didn't appear for at least three days after misfolding. The average lifespan of the worm is 21 days.)

“Our data suggest that, in terms of therapeutics, you have to start early to prevent damage and keep cells healthy,” said Morimoto, Bill and Gayle Cook Professor of Biochemistry, Molecular Biology and Cell Biology in Northwestern's Weinberg College of Arts and Sciences. “When you see a loss of function, it's too late.”

Genes that regulate lifespan were first discovered in C. elegans. The transparent roundworm is a favorite organism of biologists because its biochemical environment and fundamental mechanisms are similar to that of human beings and its genome, or complete genetic sequence, is known.

The title of the PNAS paper is “Collapse of Proteostasis Represents an Early Molecular Event in C. elegans Aging.” In addition to Morimoto, other authors of the paper are Anat Ben-Zvi and Elizabeth A. Miller, both from Northwestern.

Media Contact

Megan Fellman EurekAlert!

More Information:

http://www.northwestern.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors