Minorities accomplish most – watching micoorganisms at work

In an alpine lake, the lion's share of the lakes metabolic activity in the investigated layer was accomplished by a tiny part of the bacterial community. Such minorities have often been neglected in ecosystem studies. However, they appear to be of crucial importance in some ecosystems, the authors point out.

Microorganisms are all over the place – but who does what, and when?

An international group of scientists around Niculina Musat from Max-Planck-Institute for Marine Microbiology in Bremen, Germany, managed to determine simultaneously the metabolism and identity of single bacterial cells. At Lake Cadagno, an alpine lake in Switzerland, the scientists compared the metabolic activity of three species of bacteria. They now publish their surprising results in the “Proceedings of the National Academy of Science” (PNAS): The lion's share of the lakes metabolic activity in the investigated layer was accomplished by a tiny part of the bacterial community. The species constituting only 0.3 percent of all bacterial cells was responsible for more than 40 percent of the ammonium- and 70 percent of the carbon uptake.

Opposite to most inland waters, Lake Cadagno is permanently stratified (meromictic). The transition zone between an upper, oxic and a lower, anoxic layer is the habitat of Chromatium okenii, Lamprocystis purpurea and Chlorobium clathratiforme – all of these microorganisms are living photosynthetically in the absence of oxygen. Chlorobium clathratiforme, being the most abundant species, accounts for up to 80 percent of all cells in the investigated layer. Nevertheless, C. clathratiforme contributes only about 15 percent of the total ammonium and carbon uptake. Lamprocystis purpurea, an abundant, small species, took up less than 2 percent of the investigated nutrients. On the contrary, the comparatively large cells of Chromatium okenii, comprising a tiny part of the bacterial community, contributed the major part to the uptake of ammonium and carbon.

“Most studies on the ecology of microbial communities deal with the abundant organisms. This is also true for genetical analyses of environmental samples. Groups of microorganisms with a frequency of less than one percent, however, are often neglected and regarded as minor or of no importance. However, our results clearly show that exactly those minorities can be essential for the understanding of an ecosystem. Neglecting them can easily lead to erroneous conclusions”, underlines co-author Marcel Kuypers.

Comparing cells within one species, Musat and her colleagues found even more surprises: Metabolic rates vary greatly between individual cells of the same species, showing that microbial populations in the environment are heterogeneous, being comprised of physiologically distinct individuals. The scientists suspect genetic reasons for this heterogeneity. Differences between individual cells probably result from minor variability within the genome, springing from mutations during evolution.

The results at hand are available thanks to the so-called NanoSIMS-Technology. The scientists from the Max-Planck-Institute in Bremen operate their NanoSIMS since mid 2008 and have optimized this special mass spectrometer for ecological issues. This allows to analyze the distribution of various labelled carbon and nitrogen compounds within single cells. At the same time, single microbial cells are identified by the scientists applying molecular techniques. “This method will revolutionize ecological investigations”, Marcel Kuypers is confident.

Manfred Schlösser
Fanni Aspetsberger
For further information please contact:
Dr. Marcel Kuypers 0421 2028 647
Dr. Niculina Musat 0421 2028 653
or the MPI press officers
Dr. Manfred Schlösser 0421 2028704
Dr. Fanni Aspetsberger 0421 2028 704
Original article:
A single cell view on the ecophysiology of anaerobic phototrophic bacteria
Niculina Musat, Hannah Halm, Bärbel Winterholler, Peter Hoppe, Sandro Peduzzi, Francois Hillion, Francois Horreard, Rudolf Amann, Bo B. Jørgensen, and Marcel M.M. Kuypers.

doi:_10.1073/pnas.0809329105

Participating institutions
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
Max Planck Institute for Chemistry, Joh.-J.-Becher Weg 27, 55128 Mainz, Germany
Cantonal Institute of Microbiology and Alpine Biology Center Foundation Piora, Via Mirasole 22A, CH-6500 Bellinzona, Switzerland

Cameca, Quai des Gresillons 29, 92622 Gennevilliers Cedex, France

Media Contact

Dr. Manfred Schloesser idw

More Information:

http://www.mpi-bremen.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors