Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mineral magic? Common mineral capable of making and breaking bonds

29.07.2014

ASU team shows evidence for one mineral affecting the most fundamental process in organic chemistry: Carbon-hydrogen bond breaking and making

Reactions among minerals and organic compounds in hydrothermal environments are critical components of the Earth's deep carbon cycle, they provide energy for the deep biosphere, and may have implications for the origins of life. However, very little is known about how minerals influence organic reactions. A team of researchers from Arizona State University have demonstrated how a common mineral acts as a catalysts for specific hydrothermal organic reactions – negating the need for toxic solvents or expensive reagents.

ZnS

A team of ASU researchers has demonstrated that a particular mineral, sphalerite, can affect the most fundamental process in organic chemistry: carbon-hydrogen bond breaking and making. This is a sample of gem-quality sphalerite in a quartz matrix.

Credit: Tom Sharp

At the heart of organic chemistry, aka carbon chemistry, is the covalent carbon-hydrogen bond (C–H bond) ─ a fundamental link between carbon and hydrogen atoms found in nearly every organic compound.

The essential ingredients controlling chemical reactions of organic compounds in hydrothermal systems are the organic molecules, hot pressurized water, and minerals, but a mechanistic understanding of how minerals influence hydrothermal organic reactivity has been virtually nonexistent.

The ASU team set out to understand how different minerals affect hydrothermal organic reactions and found that a common sulfide mineral (ZnS, or Sphalerite) cleanly catalyzes a fundamental chemical reaction – the making and breaking of a C-H bond.

Their findings are published in the July 28 issue of the Proceedings of the National Academy of Sciences. The paper was written by a transdisciplinary team of ASU researchers that includes: Jessie Shipp (2013 PhD in Chemistry & Biochemistry), Ian Gould, Lynda Williams, Everett Shock, and Hilairy Hartnett. The work was funded by the National Science Foundation.

"Typically you wouldn't expect water and an organic hydrocarbon to react. If you place an alkane in water and add some mineral it's probably just going to sit there and do nothing," explains first author Shipp. "But at high temperature and pressure, water behaves more like an organic solvent, the thermodynamics of reactions change, and suddenly reactions that are impossible on the bench-top start becoming possible. And it's all using naturally occurring components at conditions that can be found in past and present hydrothermal systems."

A mineral in the mix

Previously, the team had found they could react organic molecules in hot pressurized water to produce many different types of products, but reactions were slow and conversions low. This work, however, shows that in the presence of sphalerite, hydrothermal reaction rates increased dramatically, the reaction approached equilibrium, and only one product formed. This very clean, very simple reaction was unexpected.

"We chose sphalerite because we had been working with iron sulfides and realized that we couldn't isolate the effects of iron from the effects of sulfur. So we tried a mineral with sulfur but not iron. Sphalerite is a common mineral in hydrothermal systems so it was a pretty good choice. We really didn't expect it to behave so differently from the iron sulfides," says Hartnett, an associate professor in the School of Earth and Space Exploration, and in the Department of Chemistry and Biochemistry at ASU.

This research provides information about exactly how the sphalerite mineral surface affects the breaking and making of the C-H bond. Sphalerite is present in marine hydrothermal systems i.e., black smokers, and has been the focus of recent origins-of-life investigations.

For their experiments, the team needed high pressures (1000 bar - nearly 1000 atm) and high temperatures (300°C) in a chemically inert container. To get these conditions, the reactants (sphalerite, water, and an organic molecule) are welded into a pure gold capsule and placed in a pressure vessel, inside a furnace. When an experiment is done, the gold capsule is frozen in liquid nitrogen to stop the reaction, opened and allowed to thaw while submerged in dichloromethane to extract the organic products.

"This research is a unique collaboration because Dr. Gould is an organic chemist and you combine him with Dr. Hartnett who studies carbon cycles and environmental geochemistry, Dr. Shock who thinks in terms of thermodynamics and about high temperature environments, and Dr. Williams who is the mineral expert, and you get a diverse set of brains thinking about the same problems," says Shipp.

Hydrothermal organic reactions affect the formation, degradation, and composition of petroleum, and provide energy and carbon sources for microbial communities in deep sedimentary systems. The results have implications for the carbon cycle, astrobiology, prebiotic organic chemistry, and perhaps even more importantly for Green Chemistry (a philosophy that encourages the design of products and processes that minimize the use and generation of hazardous substances).

"This C-H bond activation is a fundamental step that is ultimately necessary to produce more complex molecules – in the environment those molecules could be food for the deep biosphere – or involved in the production of petroleum fuels," says Hartnett. "The green chemistry side is potentially really cool – since we can conduct reactions in just hot water with a common mineral that ordinarily would require expensive or toxic catalysts or extremely harsh – acidic or oxidizing – conditions."

Nikki Cassis | Eurek Alert!
Further information:
http://www.asu.edu

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>