Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mimicking natural evolution with 'promiscuous reactions' to improve the diversity of drugs

25.08.2014

A revolutionary new scientific method developed at the University of Leeds will improve the diversity of 'biologically active molecules', such as antibiotics and anti-cancer agents.

The researchers, who report their findings online today in the journal Nature Chemistry, took their inspiration from evolution in nature. The research may uncover new pharmaceutical drugs that traditional methods would never have found.


Caption: George Karageorgis prepares reaction arrays: 96 different reactions can be quickly tested in a plate the size of a DVD. Credit: Steven Kane

"Nature produces some amazing structures with really interesting biological activity, but the plant or animal did not design them. Instead the organisms gradually evolved both the chemical structures and the methods to produce them over millennia because they were of benefit. We wanted to capture the essence of this in our approach to discovering new drugs," said George Karageorgis, a PhD student from the School of Chemistry and the Astbury Centre for Structural Molecular Biology at the University of Leeds, and first author of the study.

The traditional method for discovering new drugs involves preparing new biologically active molecules by adjusting the chemical structure of an existing one slightly and analysing the results. This trial and error method is both time consuming and limits the variety of new types of drugs that are developed.

"There is a known problem with limited diversity in drug discovery. It's like a baker always going to the same storage cupboard and using the same ingredients, yet hoping to create something that tastes different," said Dr Stuart Warriner from the School of Chemistry and the Astbury Centre for Structural Molecular Biology at the University of Leeds, a co-author of the research paper.

"Our novel approach is like taking lots of different ingredients – including things you may never think will work together – and trying different combinations of these in each cup of a cupcake tray. If the result 'tastes' promising then we use this as the starting point for another set of experiments. Only at the end, when we have something really good, do we work out exactly what we have made."

In the study, the researchers investigated the reactions of 12 types of an organic molecule called a 'diazo' compound. The researchers chose to study reactions of diazo compounds as they have many possible outcomes, depending on the specific reaction conditions (such as the temperature and concentrations used) and the choice of the reaction catalyst.

Different types and quantities of the reaction 'ingredients' were added to each of the 96 wells of an experiment tray and the products of the reaction were then tested to see if they had the required biological effect.

"The key to our method is using very promiscuous reactions which can lead to many different interesting products. Normally, these are the sort of reactions that chemists would steer well clear of, but in this case it's actually an advantage and gives us the chance of finding some diverse and active structures," said Dr Warriner.

To assess the effectiveness of the reaction products as drugs, the researchers studied how well they could activate a particular biologically relevant protein called the 'androgen receptor', which is important in the progression of certain cancers.

The results informed two further rounds of experiments on the most promising candidates, from which the researchers eventually identified three biologically active molecules.

"It's very unlikely that anyone would have ever designed these molecules or thought to use these compound classes against this target, but we have reached that result very efficiently and rapidly using our methodology," said Karageorgis.

Professor Adam Nelson from the School of Chemistry and the Astbury Centre for Structural Molecular Biology at the University of Leeds, a co-author on the paper, concludes: "The beauty of our approach is that pharmaceutical companies could start using it tomorrow, as you don't need any specialist equipment. What we need to do now is to run further studies and add even more diversity to the potential products of our reactions to convince other scientists to adopt this new technique."

###

The Engineering and Physical Sciences Research Council (EPSRC) provided funding for the equipment used in this study. Karageorgis' PhD studies are supported by a University of Leeds scholarship.

Further information

George Karageorgis, Dr Stuart Warriner and Professor Adam Nelson are available for interview. Please contact Sarah Reed, Press Officer, University of Leeds, on 0113 34 34196 or email s.j.reed@leeds.ac.uk

The research paper, 'Efficient Discovery of Bioactive Scaffolds by Activity-Directed Synthesis' (http://dx.doi.org/10.1038/nchem.2034), is published online by the journal Nature Chemistry on 24 August 2014.

University of Leeds

The University of Leeds is one of the largest higher education institutions in the UK and a member of the Russell Group of research-intensive universities. http://www.leeds.ac.uk

Sarah Reed | Eurek Alert!

Further reports about: Biology Molecular diversity drugs reaction reactions structures types

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>