Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopic Universe Provides Insight Into Life and Death of a Neutron

01.06.2018

Experiments on the lifetime of a neutron reveal surprising and unexplained deviations. In order to address this problem of subatomic physics, a team of physicists from Jülich, the UK, and the USA created a simulation of a microscopic universe. They were thus able to calculate a fundamental natural constant of nuclear physics for the first time – a milestone in this field of research. The results of their work were published today in the renowned journal Nature.

A neutron “lives” for almost 15 minutes before it decays. The elementary particles remain stable as long as they are in the atomic nuclei. In isolation, however, they decay after just under 15 minutes into other particles – protons, electrons, and antineutrinos.


A neutron decays into a proton, an electron, and an antineutrino. In the QCD lattice approach, a discrete space is used for the calculation.

Evan Berkowitz

To determine the lifetime of the neutrons, scientists observe either the emergence of these decay products or the disappearance of the neutrons. However, these two varying experiments deliver different results. The deviation is less than nine seconds. This might not appear to be much, but the conflicts between the experimental measurements could answer key questions about a new physics beyond the known particles and processes in the universe.

For the first time, an international team of scientists used supercomputers to calculate a quantity that is crucial for understanding the lifetime of neutrons: the axial coupling constant of the weak interaction, or gA for short. “It determines the force with which the particles are bound together in the atomic nucleus as well as the radioactive decay rate of the neutron,” explains Evan Berkowitz from the Nuclear Physics Institute (IKP).

“We were able to calculate the coupling constant with unprecedented precision and our method is paving the way towards further improvements that may explain the experimental discrepancy in the lifetime of neutrons.”

Space and time on a lattice

For their calculation, the researchers turned to a key feature of the standard model of particle physics: quantum chromodynamics (QCD). This theory describes how quarks and gluons – the building blocks for nuclear particles such as protons and neutrons – interact with each other. These interactions determine the mass of the nuclear particles, the strength of their coupling, and, therefore, the value of the coupling constants.

However, QCD calculations are extremely complex. For their calculations, the researchers therefore used a numerical simulation known as lattice QCD. “In this simulation, space and time are represented by points on a lattice,” explains Berkowitz. “Through this construction, a calculation of the relations between the elementary particles is fundamentally possible – but only with the aid of powerful supercomputers.” The scientists used the Titan supercomputer at the Oak Ridge National Laboratory in Tennessee for their simulations.

Microscopic universe

The coupling constant, which previously could only be derived from neutron decay experiments, was thus determined directly from the standard model for the first time. To this end, the researchers created a simulation of a microscopic part of the universe measuring just a few neutrons wide – much smaller than the smallest atom. The model universe contains a single neutron in the middle of a “sea” of gluons and pairs of quarks and their antiparticles, antiquarks. In this microcosm, the scientists simulated the decay of a neutron to predict what happens in nature.

Berkowitz explains that this allows two results for gA from completely independent sources – those from the neutron decay experiments and those using the standard model – to be compared with each other for the first time. “Even the smallest deviations between the values could lead to new discoveries related to dark matter, the asymmetry between matter and antimatter, and other fundamental questions concerning the nature of the universe.”

A new era

“Through our simulation, we were also able to show that the lattice QCD approach can be applied to basic research on the physics of atomic nuclei,” explains Berkowitz. The methods have so far mainly been used for elementary particle physics, i.e. the physics of quarks and gluons , and of short-lived particles found in collider experiments. “These calculations ring in a new era. We can now determine parameters of nuclear physics with greater precision without having to resort to experimental measurement data or phenomenological models.”

Original publication: A per-cent-level determination of the nucleon axial coupling from Quantum Chromodynamics, by C.C. Chang, A. N. Nicholson, E. Rinaldi, E. Berkowitz, N. Garron, D.A. Brantley, H. Monge-Camacho, C. Monahan, C. Bouchard, M.A. Clark, B. Joó, T. Kurth, K. Orginos, P. Vranas, and A. Walker-Loud, Nature,
DOI: 10.1038/s41586-018-0161-8

Contact:
Dr. Evan Berkowitz
Nuclear Physics Institute – Theory of the Strong Interactions (IKP-3/IAS-4)
Tel.: +49 2462 62-4161
Email: e.berkowitz@fz-juelich.de

Press contact:
Dr. Regine Panknin
Press officer
Tel: +49 2461 61-9054
Email: r.panknin@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/ikp/ikp-3/EN/Home/TheorieDerStarkenWechselwirkung.html Nuclear Physics Institute – Theory of the Strong Interactions (IKP-3/IAS-4)

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

More articles from Life Sciences:

nachricht Machine learning microscope adapts lighting to improve diagnosis
20.11.2019 | Duke University

nachricht The neocortex is critical for learning and memory
20.11.2019 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>