Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond the microscope: Identifying specific cancers using molecular analysis

20.03.2012
Researchers from Huntsman Cancer Institute (HCI) at the University of Utah report they have discovered a method to identify cancer-causing rearrangements of genetic material called chromosomal translocations quickly, accurately, and inexpensively. A description of the method and the research results appear online in this month's issue of the EMBO Molecular Medicine journal.

Many cancers result from chromosomal translocations in tumor cells. Hundreds of cancer-causing translocations have been discovered, but current methods for detecting them have significant shortcomings.

The technique, developed in the lab of Stephen Lessnick, M.D., Ph.D., director of the Center for Children's Cancer Research at HCI, combines microarray technology, which can look for thousands of translocations in a single test, with a novel antibody that is used to detect the presence of the translocation.

"We're moving past the age when a pathologist looking through the microscope at a tumor sample is the best way to diagnose what type of cancer it is," said Lessnick. "The molecular tests currently available are slow, inefficient, and expensive, and one of the biggest issues is that you need high-quality tumor samples, not always available in the clinical setting, to do them." According to Lessnick, his method tolerates real-life specimens much better than the current standard techniques.

"Originally, this method was used in HCI's Cairns lab (headed by Bradley R. Cairns, Ph.D.) to study RNA in yeast. We took their method and applied it to our study of chromosomal translocations in human tissue," Lessnick said. He said the next task is to find a commercial partner to develop this research from a 'proof of principle' into a diagnostic test that doctors can use to help their patients.

"With this method, there's potential to develop a single array that could test for every known cancer-causing translocation simultaneously. Currently, a clinician has to decide beforehand which specific cancer to test," he said.

The research used Ewing's sarcoma (a rare childhood cancer) as the case study for developing the method, but Lessnick maintains that the technology can be easily applied to any type of cancer caused by a translocation.

Funding for this project came from the National Institutes of Health's Innovative Molecular Analysis Technology program. The program focuses on rapid movement of new ideas from basic science labs (such as the Cairns lab) out into the clinical realm. "They were willing to fund this idea without a lot of preliminary data because it showed good potential to move toward clinical uses," said Lessnick.

Lessnick is a Jon and Karen Huntsman Presidential Professor in Cancer Research, and a professor in the Division of Pediatric Hematology/Oncology at the University of Utah. Other HCI investigators participating in the research include Bradley R. Cairns, Ph.D., HCI Senior Director of Basic Science, Howard Hughes Medical Institute Investigator, and professor in the Department of Oncological Sciences at the University of Utah, as well as Brett Milash, Ph.D., and Brian Dalley, Ph.D., of the Microarray and Genomic Analysis Core Facility.

This work was supported by the NIH via R21 CA138295 to SLL, T32 GM007464 to ND, and P30 CA042014 to Huntsman Cancer Institute. Cairns is supported by the Howard Hughes Medical Institute. Additional work in the Lessnick lab is supported by Sidney's Incredible Defeat of Ewing's Sarcoma (SIDES).

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-Designated Cancer Center, which means that it meets the highest national standards for cancer care and research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of the world's leading cancer centers that is dedicated to improving the quality and effectiveness of care provided to patients with cancer. For more information about HCI, please visit www.huntsmancancer.org.

Linda Aagard | EurekAlert!
Further information:
http://www.huntsmancancer.org

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>