Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microorganisms Getting a Grip — Plasmids Control Marine Biofilm Formation

11.03.2016

Switching between mobile and sessile life styles is typical of many species of the bacteria of the Roseobacter group. Microbiologists at the Leibniz Institute DSMZ have now demonstrated that the genes responsible for this, usually are located outside the bacterial chromosome on a single plasmid. The study show that even characteristics as complex as the ability of biofilm formation can be passed on via horizontal gene transfer. Within the Roseobacter group, this has actually happened multiple times.

Their diverse metabolic characteristics make bacteria of the Roseobacter group some of the most abundant microorganisms in nutrient-rich coastal waters. Roseobacters together with other bacteria form highly complex biofilms that have been dubbed “cities of microbes”.


Phaeobacter inhibens DSM 17395 forming a biofilm

Leibniz Institute DSMZ

However, they can also be found swimming freely in the oceans. Switching between mobile and sessile life styles is typical of many species of these marine bacteria. This flexibility is based on their ability to actively move with the help of flagella, while they are also capable of reversibly attaching to surfaces.

Jörn Petersen, a microbiologist at the Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, in Braunschweig, Germany, and his colleagues have now demonstrated that the genes responsible for biofilm formation usually are located outside the bacterial chromosome on a single plasmid.

They reached this conclusion based on a physiological and genetic study of 33 Roseobacter strains. First, Petersen and colleagues showed that all bacteria that are efficient biofilm formers also are mobile. By removing the plasmids responsible for biofilm formation, they were able to demonstrate that the bacteria not only lost their ability of adhering to surfaces, but also their swimming capability.

“Thus, it is obvious that the responsible genes are located on these extrachromosomal elements,” said Petersen. Genes that are passed on via plasmids are able to cross the species boundary relatively easily. “Our studies show that even characteristics as complex as the ability of biofilm formation can be passed on via horizontal gene transfer,” said Petersen. Within the Roseobacter group, this type of horizontal gene transfer has actually happened multiple times, reflecting the great importance of plasmids for quick adaptation to new ecological niches.

The majority of the 33 Roseobacter strains studied were type strains, i.e., reference strains representative of the world’s bacterial diversity, which are archived in the DSMZ collection. Unlike previous studies, the DSMZ researchers genetically analyzed the group across its full evolutionary range. “Our present studies by far exceed anecdotal findings previously reported for individual model organisms. Moreover, they demonstrate the close link between basic research and collection activities here at DSMZ. As such, they also reflect DSMZ’s importance as one of the world’s leading resource centers for biological materials,” said Petersen.

The studies were supported by the Deutsche Forschungsgemeinschaft (DFG) and are part of the DFG Collaborative Research Center TRR51, “Roseobacter.” Results were recently published in Nature Publishing Group’s distinguished ISME Journal.

Further reading:
Original article:
Michael V, Frank O, Bartling P, Scheuner C, Göker M, Brinkmann H, Petersen J. (2016). Biofilm plasmids with a rhamnose operon are widely distributed determinants of the ʻswim-or-stickʼ lifestyle in roseobacers. ISME J [Epub ahead of print]. http://doi.org/10.1038/ismej.2016.30

Background:
Petersen J, Frank O, Göker M, Pradella S. (2013). Extrachromosomal, extraordinary and essential - the plasmids of the Roseobacter clade. Applied Microbiology and Biotechnology 97: 2805-2815.

Frank O, Michael V, Päuker O, Boedeker C, Jogler C, Rohde M, Petersen J. (2015). Plasmid curing and the loss of grip--the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae. Systematic and Applied Microbiology 38:120-127.

Scientific contact:
PD Dr. Jörn Petersen
Department Protists and Cyanobacteria (PuC)
Head of Projekt A5 „Plasmide“ Transregio Sonderforschungsbreich (TRR51)
Phone.: 0531 2616-209
Email: joern.petersen@dsmz.de

About Leibniz Institute DSMZ
The Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures GmbH is a Leibniz Association institution. Offering comprehensive scientific services and a wide range of biological materials it has been a partner for research and industry organizations worldwide for decades. DSMZ is one of the largest biological resource centers of its kind to be compliant with the internationally recognized quality norm ISO 9001:2008. As a patent depository, DSMZ currently offers the only option in Germany of accepting biological materials according to the requirements of the Budapest Treaty. The second major function of DSMZ, in addition to its scientific services, is its collection-related research. The Brunswick (Braunschweig), Germany, based collection has existed for 42 years and holds more than 52,000 cultures and biomaterials. DSMZ is the most diverse collection worldwide: In addition to fungi, yeasts, bacteria, and archea, it is home to human and animal cell cultures, plant viruses, and plan cell cultures that are archived and studied there. http://www.dsmz.de

Christian Engel | idw - Informationsdienst Wissenschaft

Further reports about: Biofilm DSMZ Marine biofilm formation biological materials plasmids strains

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>