Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microorganisms duke it out within algal blooms

01.03.2016

Looking closer, scientists discover that blooms such as 'red tides' encompass microscopic battles, with the front lines shifting on a daily basis

An unseen war rages between the ocean's tiniest organisms, and it has significant implications for understanding the ocean's role in climate change, according to a new study.


A fluorescence microscopic image showing an example of the phytoplankton and bacteria that David Needham and Jed Fuhrman observed during a five-month study of algal blooms. The large star-shape in the middle is phytoplankton; the larger green dots are bacteria or Archaea; and the tiny green dots are viruses.

Courtesy of David Needham and Jed Fuhrman/USC

David Needham and Jed Fuhrman from the USC Dornsife College of Letters, Arts and Sciences sampled water off the coast of Southern California over the course of five months, almost every day shortly after an algal bloom occurred, and found that the cloud of microorganisms is anything but uniform. Instead, they found traces of a constant battle between dozens of species, with the fortunes of war favoring different organisms on a daily basis.

Not only do the tiny organisms, known as phytoplankton, make up the base of the food chain in the ocean, they also are the planet's main scrubbers of carbon dioxide from the atmosphere.

"We witnessed a daily boom and bust among the phytoplankton species," said Fuhrman, senior author of a study that was published in Nature Microbiology on Feb. 29.

Scientists concerned with global warming have a vested interest in looking closely at phytoplankton. The microscopic plants, most of which are about as big as a piece of paper is thick, perform roughly half of the world's carbon fixation - that is, they convert carbon dioxide from the atmosphere into organic compounds that can be used by other organisms.

As creatures that exist on the boundary between sea and sky, they also have an outsized role in carbon fixation - sucking up atmospheric carbon dioxide and locking it away in the ocean.

Different phytoplankton manage carbon dioxide to varying degrees, however, making it important for researchers to gain a more nuanced understanding of algal blooms if they hope to quantify the blooms' role in carbon fixation and carbon sequestration.

Scientists have also long wondered about the trigger of algal blooms, which can include "red tides" caused by toxic dinoflagellates that poison marine life like sea lions and can render shellfish in the area unsafe to eat. Those dinoflagellates and other toxic algae were among some of the microorganisms that dominated the bloom periodically.

Most previous efforts to study the blooms relied on microscope analysis to classify which species of phytoplankton were in the mix - a problematic strategy, given that many of the organisms tend to look alike, even to a trained eye.

Instead, Needham and Fuhrman analyzed the organisms' ribosomal RNA, which give each species a distinctive and quantifiable signature. Specifically, they sequenced the RNA from the parts of the cell that perform photosynthesis, called chloroplasts.

"This could shift how this work is done in the future," said Needham, lead author of the study. "I think a lot of people are going to start taking a closer look at their blooms."

The samples were collected by dipping buckets off the side of the Miss Christi - the ship that sails daily between San Pedro and the USC Wrigley Marine Science Center (run by the USC Wrigley Institute for Environmental Studies) on Catalina Island - at a specific location at about the half way point of the trip each day.

The authors were surprised not only by the sheer diversity of phytoplankton in the bloom they studied - they counted about three dozen different species - but also by the constant and abrupt shifts in which species were dominant within the bloom.

Some of the species variability can be attributed to spatial variability However, the content of the samples changed too dramatically for that to be the sole cause, Needham and Fuhrman concluded.

In addition, as the phytoplankton varied, so did the species of bacteria and other microorganisms that feed on the organic material produced by them. On one of the sample days, the team was shocked to discover that the dominant species were in a group called the Archaea - single-celled microorganisms once thought to live only in extreme environments like hot springs.

"Until the 1990s nobody thought Archaea were even present in the sea in appreciable numbers," Needham said.

Needham and Fuhrman's findings also have bearing on the causes of algal blooms, which remain shrouded in mystery. Temperature and nutrient content of the ocean have been shown to help trigger the blooms - but they remain unpredictable.

###

This research was funded by the National Science Foundation, grants 1031743 and 1136818; and the Gordon and Betty Moore Foundation Marine Microbiology Initiative, grant GBMF3779.

The study can be found online at http://www.nature.com/articles/nmicrobiol20165.

Media Contact

Robert Perkins
perkinsr@usc.edu
213-740-9226

 @USC

http://www.usc.edu 

Robert Perkins | EurekAlert!

Further reports about: Marine algal blooms carbon dioxide carbon fixation dioxide microorganisms

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>