Micromotors use surface variations for docking and guiding

An active particle approaches a micro-fabricated step and orients along it due to chemical activity and hydrodynamic interactions. MPI for Intelligent Systems, Stuttgart

Samuel Sánchez and Mykola Tasinkevych's ‘microswimmers’ are usually guided through fluids using specially engineered magnetic multilayer coatings, which combined with external magnetic fields, helps to control their trajectory.

This new study, the result of a collaboration between experimental research and theory, demonstrates that the particles can use the features of the surfaces over which they swim to change their direction of motion.

“Micromotors tend to settle and move near surfaces, and we’ve seen that this tends to interfere with their swimming behaviour,” says group leader and ICREA research professor Samuel, who heads the Smart Nano-Bio-Devices group at IBEC and Stuttgart’s MPI-IS. “This led us to explore new methods to guide micromotors using surface alterations.”

Using a microfabrication process, the researchers modified surfaces to create a series of indentations or steps, several times smaller than the radius of the particle, which a specific type of micromotors – Janus particles, whose surfaces have two or more distinct physical properties – can use as signals to follow a particular path. This strategy is inspired by the one used by molecular motors in natural systems, where inside the cell, motor proteins bind to the cytoskeleton filaments to achieve directional motion.

The Janus particles are prepared by coating half of a silica particle with platinum. While the platinum face acts as a catalyst in hydrogen peroxide, the silica side remains inert, an asymmetry in chemical properties that leads to a self-propelled motion of these colloids.

The researchers noticed that the particles tend to have a stable orientation parallel to the surface, and exploited this phenomenon to guide the particles along sub-micron sized steps. They were able to demonstrate that the chemical activity of the particles and the associated hydrodynamic interactions with the nearby surfaces are responsible for the observed phenomenon.

“This finding opens up the possibility of guiding these particles along complex pathways using small changes in the surface,” explains Samuel. “This can have significant implications for the design of new artificial micromotors for a variety of applications.”

Publication:
Simmchen, J., Katuri, J., Uspal, W.E., Popescu, M.N., Tasinkevych, M., and Sanchez, S. (2016). Sculpted topographical pathways guide chemical microswimmers. Nature Communications Volume: 7, Article number: 10598, DOI:10.1038/ncomms10598

http://www.nature.com/ncomms/2016/160209/ncomms10598/full/ncomms10598.html
http://www.is.mpg.de/de/sanchez

Media Contact

Annette Stumpf Max-Planck-Institut für Intelligente Systeme

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Results for control of pollutants in water

Brazilian scientists tested a simple and sustainable method for monitoring and degrading a mixture of polycyclic aromatic hydrocarbons, compounds present in fossil fuels and industrial waste. An article published in the journal Catalysis…

A tandem approach for better solar cells

Perovskite-based solar cells were first proved in 2009 to have excellent light-absorbing properties of methylammonium lead bromide and methylammonium lead iodide, collectively referred to as lead halide perovskites or, more…

The behavior of ant queens is shaped by their social environment

Specialization of ant queens as mere egg-layers is reversible / Queen behavioral specialization is initiated and maintained by the presence of workers. The queens in colonies of social insects, such…

Partners & Sponsors