Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microevolutionary evidence: The eyes have it

23.11.2015

Larger eye size is the source of a sizable reproductive advantage for a tiny freshwater crustacean

For a beholder who is an evolutionary biologist, the eye is has long been a fascinating puzzle because of the many parts that must seamlessly work together for the whole to work properly. Biologists have addressed the question of ocular evolution with comparisons between different species, or macroevolutionary studies, and shown how the evolutionary process can be broken down into discrete steps through which a simple light-sensitive cell can evolve into a complex, multicomponent eye through adaptation.


In the freshwater crustacean Daphnia obtusa Kurz, larger eye size was shown to be the source of a sizable reproductive advantage.

Credit: University of South Carolina

In contrast, hard data for how the process might work within individual species -- a microevolutionary approach to the eye's evolution, that is -- have only just arrived. A research team led by biology professor Jeff Dudycha recently published a paper in the Journal of Evolutionary Biology showing that larger eye size lends a sizable reproductive advantage to individuals of a particular species.

"What also turned out to be interesting is that we were also able to measure the effect of variation in body size, and it turns out that the effect of eye size was greater than the effect of body size," Dudycha says. "Within ecology and evolution, everybody understands that body size is related to reproductive output. Larger individuals can produce more offspring, and that's true over a wide variety of organisms. So here was something that everybody knew and understood affected reproductive success, and we have data that said that eye size, which nobody had looked at anywhere as far as we can tell, had a bigger effect."

The focus of the research team was a tiny freshwater crustacean, Daphnia obtusa Kurz. Just 1 to 2 millimeters long, Daphnia would be hard to spot except for one distinguishing feature: its black eye, which is large for its body size.

"A big eye is costly to maintain, because any kind of neurological tissue, including retinal tissue, is energetically demanding relative to other kinds of tissue," Dudycha says. "And we also know there are organisms, like blind cave fish, that once had eyes and have moved into environments without any light at all, and they lose their eyes, which wouldn't happen unless there was a cost to having an eye. So if there is a cost to keep having eyes, there needs to be some kind of benefit, and we were wondering if we could measure that benefit."

The team, which included graduate student Chris Brandon and summer undergraduate researcher Tiesha James, did that by collecting more than 200 female Daphnia individuals from a pond in South Carolina's Congaree National Park and determining both eye diameter and clutch size, or the number of eggs each carried.

The correlation was clear: an increase in eye diameter of 20 micrometers, which is about one standard deviation of the mean diameter, translated into about one more egg beyond the average of about six.

They went further by doing laboratory work with collected specimens to ensure that the variation of eye size in the wild wasn't a result of other factors, such as differing light or nutrient availability among juveniles. Their results demonstrated that genetic variation is a substantial driver of differences in eye size and reproduction.

The study provides a quantitative foundation for eye microevolution where it had been lacking , Dudycha says.

"The macroevolutionary approach shows differences in eyes that are much larger, that are big jumps compared to what we looked at," he says. "We were looking at the question, 'Are there tiny little steps that connect the big jumps?' And what we found was, there were."

Media Contact

Steven Powell
spowell2@mailbox.sc.edu
803-777-1923

 @UofSC

http://www.sc.edu/ 

Steven Powell | EurekAlert!

More articles from Life Sciences:

nachricht Molecular 'clutch' puts infection-fighting cells into gear
22.07.2019 | National Centre for Biological Sciences

nachricht Living Components
22.07.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Toward molecular computers: First measurement of single-molecule heat transfer

22.07.2019 | Information Technology

First impressions go a long way in the immune system

22.07.2019 | Health and Medicine

New Record: PLQE of 70.3% in lead-free halide double perovskites

22.07.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>