Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbes team up to boost plants' stress tolerance

18.02.2013
While most farmers consider viruses and fungi potential threats to their crops, these microbes can help wild plants adapt to extreme conditions, according to a Penn State virologist.

Discovering how microbes collaborate to improve the hardiness of plants is a key to sustainable agriculture that can help meet increasing food demands, in addition to avoiding possible conflicts over scare resources, said Marilyn Roossinck, professor of plant pathology and environmental microbiology, and biology.

"It's a security issue," Roossinck said. "The amount of arable land is shrinking as cities are growing, and climate change is also affecting our ability to grow enough food and food shortages can lead to unrest and wars."

Population growth makes this research important as well, Roossinck added.

"The global population is heading toward 9 billion and incidents of drought like we had recently are all concerns," said Roossinck. "We need to start taking this seriously."

Roossinck, who reports on the findings today (Feb. 17) at the annual meeting of the American Association for the Advancement of Science in Boston, said that she and her colleagues found an example of a collaboration between plants and viruses that confer drought tolerance to many different crop plants.

The researchers tested four different viruses and several different plants, including crops such as rice, tomato, squash and beets, and showed that the viruses increased the plants' ability to tolerate drought. Virus infection also provided cold tolerance in some cases.

A leafy plant, related to a common weed known as lamb's quarter, was also infected with a virus that caused a local infection. The infection was enough to boost the plant's drought tolerance and may mean that the virus does not have to actively replicate in the cells where the resistance to drought occurs, according to Roossinck.

In studies on plants that thrive in the volcanic soils of Costa Rica and in the hot, geothermal ground in Yellowstone National Park, viruses and fungi work together with plants to confer temperature hardiness, said Roossinck. Researchers found that fungi and a type of grass -- tropical panic grass -- found in Yellowstone National Park grow together in temperatures above 125 degrees Fahrenheit. If the plant and fungus are separated, however, both die in the same heat levels.

Because viruses are often present in plant fungi, Roossinck wondered if viruses played a role in the reaction.

"I noticed that all of the samples from the geothermal soils had a virus, so it seemed worth it to take a deeper look," said Roossinck.

The researchers found that there was no heat tolerance without the virus. Once the researchers cured the fungus of the virus, the plant was unable to withstand the heat. When the virus was reintroduced, the plant regained heat tolerance.

"A virus is absolutely required for thermal tolerance," said Roossinck. "If you cure the fungus of the virus, you no longer have the thermal tolerance."

While researchers do not entirely understand the role of viruses in helping plants withstand extreme conditions, Roossinck said that future research may help the agricultural industry naturally develop hardier plants, rather than rely on chemical solutions that threaten the environment.

"The question is, can we restore the natural level of microbes in plants and grow them better and more tolerant of environmental stress like heat and drought, or pathogens?" Roossinck said. "This may lead to more natural methods of creating crops that are more heat, drought and stress tolerant."

Matthew Swayne | EurekAlert!
Further information:
http://www.psu.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>