Microbes – possible hitchhikers to space?

Sample taking ESA's Herschel space observatory<br>Image: ESA/DLR

Bacteria are ubiquitous and some of them are real survival specialists – a property, which is particularly challenging for space missions. The spacecraft that are sent on their long journey into space should be as clean as possible and considerably reduced in microbial burden, since the risk of biological contamination of other planets is high.

Such a contamination could affect the detection of extraterrestrial life or make it even impossible. For this reason, spacecraft are assembled in so-called “clean rooms” under the most stringent controls for bio-contamination. Nevertheless, microorganisms exist that can deal with the prevailing extreme conditions such as dryness, lack of nutrients or presence of disinfectants. Space agencies have defined standards by which to measure the bioburden and diversity of microbial species in the clean rooms and on the spacecraft. The DSMZ now offers, in cooperation with the European Space Agency (ESA), the first public collection of extremotolerant bacterial strains adapted to the harsh conditions within the clean rooms.

This collection is an important resource for research institutes and industry to investigate adaptive mechanisms of bacteria (for instance, resistance to heat, UV radiation, ionizing radiation, desiccation, disinfectants). The journal “Astrobiology” reports about this culture collection in its current issue.

“For any space mission an upper limit of bioburden is defined,” says Dr. Rüdiger Pukall, a microbiologist at DSMZ. “Bioburden measurements are a crucial part of Planetary Protection requirements”. This concept includes all activities that prevent contamination of planets and other celestial bodies by terrestrial forms of life, such as microorganisms, in the context of inter-planetary space missions. It is of particular importance to evaluate the biodiversity of microbial communities on spaceflight hardware and in associated assembly facilities. The objective in doing so is to develop appropriate decontamination strategies to avoid microbial hitchhikers during the next mission to Mars.”

Selected surface areas within European spacecraft associated clean rooms as well as the surface of the Herschel Space Observatory located therein were sampled between 2007 until 2009 by microbiologists from the Leibniz-Institute DSMZ, the German Aerospace Center (DLR) and the University Regensburg. The Herschel Space Observatory was constructed at various locations around the globe: clean rooms in Friedrichshafen (Germany), Noordwijk (Netherlands), and at Europe’s spaceport in Kourou (French Guiana).

„A clean room is a particularly extreme habitat for microbial survivalists”, explains Rüdiger Pukall. “The nutrient-poor environment, controlled moisture and temperature, air filtering and frequent decontamination of surfaces create a special habitat for spore-forming, autotrophic, multi-resistant, facultatively or obligate anaerobic bacteria.”

Even taking a sample of the bacteria in the clean rooms is a special challenge for the researchers. “In order not to introduce any foreign microorganisms or particles, the microbiologists have to wear protective suits and face masks “, reports Rüdiger Pukall. “Here the samples were taken with special swabs and wipes, according to defined standard procedures from ESA. The samples were subsequently analysed at the University Regensburg and the DLR in Köln and the bacteria were isolated using diverse cultivation strategies.”

Then Dr. Rüdiger Pukall's team at DSMZ in Braunschweig identified the bacterial strains by 16S rRNA gene sequence analysis. For long term storage, the bacteria were freeze-dried and stored in liquid nitrogen. Bacteria that could not be cultivated were also identified via sequencing after extraction of the total genomic DNA from the samples.

A collection of “survivalists”
The core of this special collection consists of about 300 bacterial strains that were isolated from various clean rooms. All bacteria belong to Risk group 1 or 2. A large portion of the isolates can be assigned to the Gram-positive bacteria, whereby spore-forming bacteria from the species Bacillus as well as Micrococcus- and Staphylococcus-species are represented. Gram-negative bacteria are predominantly represented by the species Acinetobacter, Pseudomonas and Stenotrophomonas.
Recently, an additional set of 60 isolates affiliated to these genera were added to the ESA collection. The isolates derived from samples taken in 2003 and 2004 within an ESA founded project in cooperation of DLR and DSMZ during preparation of the missions SMART-1 (interplanetary satellite, lunar mission) and ROSETTA (exploration of comets) in Noordwijk and Kourou. Five clean room isolates were provided by the NASA Jet Propulsion Laboratory (USA) in addition.
About 30 per cent of the microbes within the ESA collection are still unknown and have now been made available for research purposes. Some of these isolates have been described recently as a novel species, such as Paenibacillus purispatii (DSM 22991) or Tersicoccus phoenicis (KO_PS43, DSM 30849), a representative of a new bacterial genus.

Significance of the ESA collection
The collection of extremotolerant microbes which are adapted to the artificial biotope of the clean rooms offers an extraordinary valuable and beneficial source for industry and research. For ESA, the culture collection is an essential tool to understand the biological contamination and its potential risk and to evaluate novel biological decontamination procedures and disinfection strategies. The collection will be expanded within the next three years by including more extremotolerant bacteria that could be of interest for industry and research.

Link to the collection:
http://www.dsmz.de/catalogues/catalogue-microorganisms/specific-catalogues/esa-strains.html

Original article:

1)Moissl-Eichinger C, Rettberg P, Pukall R. (2012). The first collection of spacecraft-associated microorganisms: a public source for extremotolerant microorganisms from spacecraft assembly clean rooms. Astrobiology 12(11):1024-1034.
2)Stieglmeier M, Rettberg P, Barczyk S, Bohmeier M, Pukall R, Wirth R, Moissl-Eichinger C. (2012). Abundance and diversity of microbial inhabitants in European spacecraft-associated clean rooms. Astrobiology 12(6):572-585.

Additional literature:
1)Behrendt U, Schumann P, Stieglmeier M, Pukall R, Augustin J, Spröer C, Schwendner P, Moissl-Eichinger C, Ulrich A. (2010). Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity–description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room. Syst Appl Microbiol. 2010 Oct; 33(6):328-36.

2)Vaishampayan P, Moissl-Eichinger C, Pukall R, Schumann P, Spröer C, Augustus A, Hayden Roberts A, Namba G, Cisneros J, Salmassi T, Venkateswaran K. (2012). Description of Tersicoccus phoenicis gen. nov., sp. nov. isolated from spacecraft assembly clean room environments. Int J Syst Evol Microbiol. 2012 Dec 7. [Epub ahead of print]

Background:
Planetary protection is the term that describes the aim of protecting solar system bodies from contamination by terrestrial life, and protecting Earth from possible life forms that may be returned from other solar system bodies. Regulations are based on obligations identified in the United Nations Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and other Celestial Bodies, and advice provided by the Committee on Space Research (COSPAR).

Please find the press release, image material and further information for download at http://www.dsmz.de/de/start/details/entry/microbes-possible.html

Press contact:

Susanne Thiele
Head of press and communication
Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
Inhoffenstraße 7 B
38124 Braunschweig
Deutschland / Germany
Phone: ++49531-2616-300
Fax ++49531-2616-418
susanne.thiele@dsmz.de

About the Leibniz-Institute DSMZ
The Leibniz-Institute DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH [German Collection of Microorganisms and Cell Cultures] is an establishment of the Leibniz Gemeinschaft [Leibniz Association], and with its comprehensive scientific services and broad spectrum of biological materials has been a worldwide partner for research and industry for decades. As one of the largest biological resource centres of its kind, the DSMZ was confirmed as compliant with the globally accepted quality standard ISO 9001:2008. As a patent depository, the DSMZ offers the singular possibility throughout the whole of Germany to gather biological material according to the requirements of the Budapest Treaty. Aside from the scientific service, the collection-based research forms the second pillar of the DSMZ. The collection, with headquarters in Braunschweig, has existed for 42 years and houses more than 32,000 cultures and biomaterials. The DSMZ is the most diverse collection worldwide: in addition to fungi, yeasts, bacteria and archaea, human and animal cell cultures as well plant viruses and plant cell cultures are researched and archived there. www.dsmz.de

Leibniz Gemeinschaft
The Leibniz Gemeinschaft [Leibniz Association] connects 86 independent research establishments. Their focus encompasses the sciences of nature, engineering and environment as well as economics, aerospace and social science – and even the humanities. The Leibniz-Institutes deal with issues that are relevant from a societal, economic and ecologic perspective. They conduct knowledge- and application-oriented fundamental research. They maintain scientific infrastructures and offer research-based services. The focus of the Leibniz-Gemeinschaft is knowledge transfer in the fields of politics, science, economics and the public. The Leibniz-Institutes maintain close cooperation with institutions of higher education – among others in the form of science campuses –, with industry and other partners in-country and abroad. They are subject to a standard-setting transparent and independent evaluation process. Based on their significance for the states and nation, the federation and countries support the institutes of the Leibniz-Gemeinschaft together. The Leibniz-Institutes have about 16,500 employees, among them 7,700 male and female scientists. The total budget of the Institute is 1.4 billion euros.

Media Contact

Susanne Thiele Leibniz-Institut DSMZ

More Information:

http://www.dsmz.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors