Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbe hunters discover long-sought-after iron-munching microbe

24.10.2016

A microbe that ‘eats’ both methane and iron: microbiologists have long suspected its existence, but were not able to find it - until now. Researchers at Radboud University and the Max Planck Institute for Marine Microbiology in Bremen discovered a microorganism that couples the reduction of iron to methane oxidation, and could thus be relevant in controlling greenhouse gas emissions worldwide.

The balance between methane-producing and -consuming processes has a major effect on the worldwide emission of this strong greenhouse gas into our atmosphere.


One oft he bioreactors, in which and his colleagues found the rust-munching microbes.

Boran Kartal

The team of microbiologists and biogeochemists now discovered an archaeon - the other branch of ancient prokaryotes besides bacteria – of the order Methanosarcinales that uses iron to convert methane into carbon dioxide. During that process, reduced iron become available to other bacteria.

Consequently, the microorganism initiates an energy cascade influencing the iron and methane cycle and thus methane emissions, describe first authors Katharina Ettwig (Radboud University) and Baoli Zhu (Hemholtz Zentrum München) in the paper.

Application in wastewater treatment

Besides, these archaea have another trick up their sleeve. They can turn nitrate into ammonium: the favourite food of the famous anammox bacteria that turn ammonium into nitrogen gas without using oxygen. “This is relevant for wastewater treatment”, says Boran Kartal, a microbiologist who recently moved from Radboud University to the Max Planck Institute in Bremen.

“A bioreactor containing anaerobic methane and ammonium oxidizing microorganisms can be used to simultaneously convert ammonium, methane and oxidized nitrogen in wastewater into harmless nitrogen gas and carbon dioxide, which has much lower global warming potential.” The same process could also be important in paddy fields, for example, which account for around one fifth of human-related emissions of methane.

Closer than expected

While there have been numerous indications that such iron-dependent methane oxidizers existed, researchers have never been able to isolate them. Surprisingly, they were right in front of our doorstep: “After years of searching, we found them in our own sample collection”, says microbiologist Mike Jetten of Radboud University with a smile. “We eventually discovered them in enrichment cultures from the Twentekanaal in The Netherlands that we’ve had in our lab for years.”

“Based on the genetic blueprint of these microorganisms”, Kartal adds, “we hypothesized that they could convert particulate iron - basically rust - coupled to methane oxidation. So we tested our hypothesis in the lab – and these organisms did the trick.” In the next step, Kartal wants to look closer into the details of the process. “These findings fill one of the remaining gaps in our understanding of anaerobic methane oxidation. Now we want to further investigate which protein complexes are involved in the process.”

Billions of years ago

The newly discovered process could also lead to new insights into the early history of our planet. Already 4 to 2.5 billion years ago, Methanosarcinales archaea might have abundantly thrived under the methane-rich atmosphere in the ferruginous (iron holding) Archaean oceans,. More information on the metabolism of this organism can therefore shed new light on the long-standing discussion of the role of iron metabolism on early earth.

Original publication
Archaea catalyze iron-dependent anaerobic oxidation of methane
Katharina F. Ettwig, Baoli Zhu Daan R. Speth, Jan T. Keltjens, Mike S. M. Jetten, Boran Kartal
PNAS 2016

Participating institutes
Radboud University, Institute for Water and Wetland Research, Nijmegen, The Netherlands
Helmholtz Zentrum München, Institute of Groundwater Ecology, 85764 Neuherberg, Germany California Institute of Technology, Division of Geological and Planetary Sciences, Pasadena, CA, USA
Max Planck Institute for Marine Microbiology, Microbial Physiology Group, Bremen, Germany 


Please direct your queries to …
Dr. Boran Kartal
Phone: +498 421 2028 645
E-Mail: bkartal@mpi-bremen.de

or the press office
Dr. Fanni Aspetsberger
Dr. Manfred Schlösser
Phone: +49 421 2028 704
E-Mail: presse@mpi-bremen.de

Weitere Informationen:

http://www.mpi-bremen.de

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>