Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice stem cells guided into myelinating cells by the trillions

26.09.2011
Process paves way for research, possible treatments of multiple sclerosis and more

Scientists at Case Western Reserve University School of Medicine found a way to rapidly produce pure populations of cells that grow into the protective myelin coating on nerves in mice. Their process opens a door to research and potential treatments for multiple sclerosis, cerebral palsy and other demyelinating diseases afflicting millions of people worldwide.

The findings will be published in the online issue of Nature Methods, Sunday, Sept. 25, at 1 p.m. EST.

"The mouse cells that we utilized, which are pluripotent epiblast stem cells, can make any cell type in body," Paul Tesar, an assistant professor of genetics at Case Western Reserve and senior author of the study, explained. "So our goal was to devise precise methods to specifically turn them into pure populations of myelinating cells, called oligodendrocyte progenitor cells, or OPCs."

Their success holds promise for basic research and beyond.

"The ability of these methods to produce functional cells that restore myelin in diseased mice provides a solid framework for the ability to produce analogous human cells for use in the clinic," said Robert H. Miller, vice dean for research at the school of medicine and an author of the paper.

Tesar worked with CWRU School of Medicine researchers Fadi J. Najm, Shreya Nayak, and Peter C. Scacheri, from the department of genetics; Anita Zaremba, Andrew V. Caprariello and Miller, from the department of neurosciences; and with Eric. C. Freundt, now at the University of Tampa.

Myelin protects nerve axons and provides insulation needed for signals to pass along nerves intact. Loss of the coating results in damage to nerves and diminished signal-carrying capacity, which can be expressed outwardly in symptoms such as loss of coordination and cognitive function.

Scientists believe that manipulating a patient's own OPCs or transplanting OPCs could be a way to restore myelin.

And, they have long known that pluripotent stem cells have the potential to differentiate into OPCs. But, efforts to push stem cells in that direction have resulted in a mix of cell types, unsuitable for studying the developmental process that produces myelin, or to be used in therapies.

Tesar and colleagues are now able to direct mouse stem cells into oligodendrocyte progenitor cells in just 10 days. The team's success relied upon guiding the cells through specific stages that match those that occur during normal embryonic development.

First, stem cells in a petri dish are treated with molecules to direct them to become the most primitive cells in the nervous system. These cells then organize into structures called neural rosettes reminiscent of the developing brain and spinal cord.

To produce OPCs, the neural rosettes are then treated with a defined set of signaling proteins previously known to be important for generation of OPCs in the developing spinal cord.

After this 10 day protocol, the researchers were able to maintain the OPCs in the lab for more than a month by growing them on a specific protein surface called laminin and adding growth factors associated with OPC development.

The OPCs were nearly homogenous and could be multiplied to obtain more than a trillion cells.

The OPCs were treated with thyroid hormone, which is key to regulating the transition of the OPCs to oligodendrocytes. The result was the OPCs stopped proliferating and turned into oligodendrocytes within four days.

Testing on nerves lacking myelin, both on the lab bench and in diseased mouse models, showed the OPCs derived from the process flourished into oligodendrocytes and restored normal myelin within days, demonstrating their potential use in therapeutic transplants.

Because they are able to produce considerable numbers of OPCs – a capability that up until now has been lacking - the researchers have created a platform for discovering modulators of oligodendrocyte differentiation and myelination. This may be useful for developing drugs to turn a patient's own cells into myelinating cells to counter disease.

The National Institutes of Health, CWRU School of Medicine, the New York Stem Cell Foundation, the Myelin Repair Foundation, the National Center for Regenerative Medicine, and the Case Comprehensive Cancer Center funded the research.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>