Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New methods increases food and bioenergy production from cassava

24.09.2013
New ways to utilize starch from cassava can provide food to an additional 30 million people without taking more arable land than today.

By 2030 the figure will be 100 million. In addition, the same land can also contribute to an increased production of bioenergy. This is shown in a new study from researchers at the Swedish University of Agricultural Sciences (SLU) and China Agricultural University (CAU).

Cassava or manioc (Manihot esculenta Crantz.) is grown for its high starch content. The large tubers are very starchy and processed into flour or semolina (tapioca). This is the staple food for between 0.5-1 billion people in Africa, Latin America and Asia. The plant is grown on about 19 million hectares of land.

There are also strong interests to increase the use of cassava starch for industrial use. This can reduce the amount of food or result in even more land being utilized for production.

Researchers at SLU and CAU have found that discarded stems contain surprisingly large amounts of starch, up to 30% of dry mass. In today's production the stems are removed from plantations and are considered a waste problem.

With simple water-based technologies, up to 15% of starch stem dry weight can be extracted. If this starch can be used for industrial purposes, root starch previously used industrially can provide food for an additional 30 million people in the world today and close to 100 million in 2030.

The study also shows that residues and process for the extraction of stem starch can be used for the production of biofuels (solid fuel and biogas) and provide substantial added values. Without land use increases, the researchers show that food and bioenergy in combination can contribute to sustainable development and to combat malnutrition and poverty globally.

- There is great potential with the new ideas about using cassava stems as an industrial commodity, rather than as today a waste problem. We were actually surprised to find such large amounts of nutritious starch in a biomass residue, mostly stored in xylem tissues of the stems, says Associate Professor Shaojun Xiong, who is leading the research in this field.

The study is published in the latest issue of the prestigious journal Global Change Biology Bioenergy. The project was conducted in cooperation between SLU and the China Agricultural University and supported by the EU - China Energy and Environmental Applications, Swedish Energy Agency, Swedish Royal Academy of Engineering Sciences and the project Bio4Energy. CAU self-funded its share of the work.

The following have participated in the project and contributed to the article:
Shaojun Xiong, associate professor, Department of forest biomaterials and Technology (SBT), SLU.
Torbjörn Lestander, Associate Professor, SBT.
Björn Hedman, PhD, SBT.
Håkan Örberg, Research assistant SBT.
Maogui Wei, visiting researcher, SBT
Wanbin Zhu, PhD, university lecturer, China Agricultural University (CAU), and former post doc at SBT
Xie Guanghui, professor, CAU
Jiwei Ren, PhD candidate, CAU
Read the article here :
http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12112/pdf Opens in new window
Contacts:
Shaojun Xiong, Associate Professor
+46 70-5833888
shaojun.xiong@slu.se
Torbjörn Lestander, Associate Professor
+46 70-6640406
torbjorn.lestander@slu.se
Published by: olof.bergvall@slu.se

Olof Bergvall | idw
Further information:
http://www.slu.se
http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12112/pdf

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>