Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New methods identify thousands of new DNA sequences missing from the human genome reference map

21.04.2010
Findings suggest that new genome assemblies based solely on next-generation sequencing might miss many of these sites

Researchers have discovered 2,363 new DNA sequences corresponding to 730 regions on the human genome by using new approaches. These sequences represent segments of the genome that were not charted in the reference map of the human genome.

"A large portion of those sequences are either missing, fragmented or misaligned when compared to results from next-generation sequencing genome assemblies on the same samples," said Dr. Evan Eichler, senior author on the findings published April 19 in the advanced online edition of Nature Methods. Eichler is a University of Washington (UW) professor of genome sciences and an investigator with the Howard Hughes Medical Institute. "These findings suggest that new genome assemblies based solely on next-generation sequencing might miss many of these sites."

Dr. Jeffrey M. Kidd was lead author of the article, which described the new techniques the research team used to find some of the missing sequences.

Kidd headed the study while earning his Ph.D. at the University of Washington in the Eichler lab. Kidd is now a postdoctoral fellow at Stanford University.

"Over the past several years, the extent to which the structure of the genome varies among humans has become clearer. This variation suggested that there must be portions of the human genome where DNA sequences had yet to be discovered, annotated and characterized," he said "We hope that these sequences ultimately will be included as part of future releases of the reference human genome sequence."

The reference genome is a yardstick – or standard for comparison – for studies of human genetics.

The human reference genome was first created in 2001 and is updated every couple of years, Kidd explained. It's a mosaic of DNA sequences derived from several individuals. He went on to say that about 80 percent of the reference genome came from eight people. One of them actually accounts for more than 66 percent of the total.

Along with their collaborators at Agilent, the team designed ways to examine these newly identified sequences in a panel of people representing populations from around the world. The researchers found that, in some cases, the number of copies of these sequences varied from person to person.

The fact that a person can have one or more copies, or no copy at all, of a particular DNA sequence may account for why these sequences were missing from the reference genome. The researchers also found that some of these sequences were common or rare in different populations, depending on from which part of the globe their ancestors originated.

"Each segment of the reference genome is from a single person, and reflects the genome of that individual. If the donor sample was missing a sequence that many other people have, that sequence would not be represented in the reference genome." Kidd explained. "That is why some of the positions on the reference genome represent rare structural configurations or entirely omit sequences found in the majority of people." Kidd said that the study published in Nature Methods used information from nine individuals, representing various world populations, to search for and fill in some of the missing pieces.

By looking at genomes from seven kinds of animals, the researchers were also able to show that some of the newly identified DNA sequences appear to have been conserved during the evolution of mammals and man. The animals whose genomes were studied were chimpanzee, Bornean orangutan, Rhesus monkey, house mouse, Norway rat, dog, and horse.

"Some of the sequences were present in several different species, but were absent from the reference genome," Kidd said. "Some of the sequences present in several mammals actually correspond to sites of variations in humans – some people have retained a particular sequence, and others have lost it."

The researchers also developed a method to accurately genotype many of the newly found DNA sequences and created a way to look at variations in the number of copies of these sequences, thereby opening up regions of the human genome previously inaccessible to such studies.

"Scientists can now begin trying to understand the functional importance of these sequences and their variations," Kidd said.

The 1,000 Genomes Project (an international effort to fully sequence the genomes of a thousand anonymous individuals) and other genome studies are amassing massive amounts of data on DNA sequences that are then mapped to the reference genome, he added. Any study, he continued, that improves the completeness and quality of the reference genome assembly will thereby benefit these projects and lead to a fuller picture of the extent of human genomic variation.

The findings are published as "Characterization of missing human genome sequences and copy-number polymorphic insertions," in Nature Methods.

In addition to Kidd and Eichler, other researchers on the study were Nick Sampas, Paige Anderson, Anya Tsalenko, N. Alice Yamada, Peter Tsang, and Laurakay Bruhn, all of Agilent Laboratories, Santa Clara, Calif.; Francesca Antonacci, Hillary S. Hayden, Can Alkan, and Maika Malig, all of the University of Washington in Seattle; Tina Graves, Robert Fulton, Joelle Kallicki, and Richard K. Wilson, all of the Genome Sequencing Center at the Washington University School of Medicine in St. Louis; and Mario Ventura and Giuliana Giannuzzi of the Department of Genetics and Microbiology, University of Bari, Italy.

Kidd's work on this study was supported by a U.S. National Science Foundation Graduate Research Fellowship. The study was funded by a grant to Eichler from the National Institutes of Health entitled "Human Genome Structural Variation."

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: DNA DNA sequence Nature Immunology genome sequence human genome methods

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>