Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method provides fast, accurate, low cost analysis of BRCA gene mutations in breast cancer

06.08.2012
Next generation sequencing approach reported in the Journal of Molecular Diagnostics

Individuals with mutations in BRCA1 and BRCA2 genes have a significantly higher risk of developing breast and ovarian cancers. Families at risk have been seeking genetic testing and counseling based on their mutation carrier status, but the standard method of direct sequencing is labor-intensive, costly, and it only targets a part of the BRCA1 and BRCA2 genes.

A group of Canadian scientists has developed a new sequencing approach to provide a more effective method of BRCA1/2 mutational analysis. Their work is published in the September issue of The Journal of Molecular Diagnostics.

"A comprehensive understanding of BRCA1/2 genotypes and the associated tumor phenotypes is needed to establish targeted therapies," notes lead investigator Hilmi Ozcelik, PhD, of the Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada. "Recent studies have suggested that certain chemical inhibitors are effective for the treatment of breast cancer in patients with BRCA1/2 mutations. Therefore, availability of new, affordable, and comprehensive technologies to screen for these mutations will be critical to identify patient-candidates for targeted therapies."

The investigators used a technique called long range PCR to generate amplified BRCA1/2 fragments, known as amplicons, from the DNA of 12 familial breast cancer patients. The amplicons were screened using deep sequencing, also known as Next Generation Sequencing (NGS), which allows for the simultaneous screening of millions of DNA molecules, thereby dramatically increasing speed and throughput. While conventional screening methods target only the exons of BRCA1/2, deep sequencing can screen the entire genomic region, including introns and untranslated regions. The specimens had been previously analyzed using conventional methods, allowing for a comparison of results.

In addition to identifying one genetic variant that was missed due to human error, the new method successfully identified all of the expected BRCA1/2 variants. They identified both exonic and exon/intron boundary variants. The test was done at a very low cost, and with a turnaround time of 12 days. "One of the key advantages of workflow of long-range PCR is the ability to visually detect large genomic duplications, deletions, and insertions," notes Dr. Ozcelik. "When combined with next generation sequencing, long range PCR can be a powerful tool in the detection of BRCA variants in the clinical setting. Our method confirmed the presence of variants with very high accuracy, and without false-positive results."

Long-range PCR and next generation sequencing identified a wide range of intronic BRCA1/2 variants, both commonly occurring and rare, that individually or in combination may impact BRCA1/2 function. Dr. Ozcelik notes that despite a small sample size, the data shows great variability in the number, type, and frequency of variants that can be identified from familial breast cancer patients.

"Our challenge now is to establish analytical methods that systematically investigate this more comprehensive data in order to provide better risk information for clinical management of the disease," says Dr. Ozcelik. "Given the extensive level of genetic information acquired from each patient, profiles can be constructed in breast cancer patients compared to population controls to produce a more effective means of generating BRCA1/2-associated risk to the individuals and their families.

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Life Sciences:

nachricht First use of vasoprotective antibody in cardiogenic shock
17.05.2019 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

nachricht A nerve cell serves as a “single” for studies
15.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>