Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Methane source discovered in the underbrush

06.09.2012
Max Planck Institute for Chemistry: Greenhouse gas is also released by fungi

Some six years ago scientific textbooks had to be updated because of the surprising discovery made by the research group led by Frank Keppler that plants produce methane in an oxygen-rich environment.


Methane producers in the underbrush: new research shows that fungi can also produce methane.
© Katharina Lenhart

At that time this was unthinkable, since it was commonly accepted that biogenic methane could only be formed during the decomposition of organic material under strictly anoxic conditions. His group has now made another fascinating new observation: fungi produce methane.

Methane is 25 times more effective as a greenhouse gas when compared with carbon dioxide. Thus, it contributes significantly to climate change. It is alarming that the concentration of methane in the atmosphere has now almost tripled compared with the state before industrialization. Most methane is produced by bacteria in rice fields, landfills or cattle farming. Following the study of Frank Keppler and his colleagues in 2006 which reported that plants also produce methane, his research team has continued to focus on methane sources. Now Katharina Lenhart, a member of Frank Keppler’s research group at the Max Planck Institute for Chemistry, has made another interesting discovery. She discovered that fungi, which decompose dead organic matter, also emit methane.

In her study, the biologist examined eight different Basidiomycetes fungi. Under laboratory conditions she observed methane production and verified her finding using isotopic labelled substrates. During her experiments she varied the culture media on which the fungi grew and found that the underlying substrate has an impact on the amount of methane formed. Various molecular, biological and analytical methods, in collaborative work with the University of Giessen and the Helmholtz Centre for Environmental Research in Magdeburg, showed that no methanogenic microorganisms (called archaea) – which produce methane in their energy metabolism – were involved. “Thus, processes within the fungi must be responsible for the formation of methane,” explains Katharina Lenhart. As yet which processes these are remains unknown.

“When compared to other well-known methane sources, the amount of methane released by fungi is rather low. Their contribution to global warming is therefore classified as negligible,” says Frank Keppler. Of great scientific interest, however, is the ecological relevance of these results, especially since fungi are in some instances closely associated with bacteria. Many bacteria utilize the energy-rich methane in their metabolism. They absorb methane and oxidize it to water and carbon dioxide. Currently unknown is the extent to which the methane released by fungi is absorbed by these associated bacteria or whether they benefit directly from it, concludes the biologist Katharina Lenhart.

This work is a solid foundation for follow up studies by interdisciplinary research teams to provide the explanation as to why fungi emit methane to their environment.

AR

Original Publication

„Evidence for methane production by saprotrophic fungi“, Katharina Lenhart, Michael Bunge, Stefan Ratering, Thomas R. Neu, Ina Schüttmann, Markus Greule, Claudia Kammann, Sylvia Schnell, Christoph Müller, Holger Zorn, and Frank Keppler; Nature Communications
DOI: 10.1038/ncomms2049

Contact Partner

Dr. Katharina Lenhart
Max Planck Institute for Chemistry
Department of Atmospheric Chemistry, ORCAS Research Group
Tel: +49 6131/ 305 4822
E-Mail: katharina.lenhart@mpic.de

Dr. Frank Keppler
Max Planck Institute for Chemistry
Department of Atmospheric Chemistry, ORCAS Research Group
Tel: +49 6131/ 305 4800
E-Mail: frank.keppler@mpic.de

Dr. Susanne Benner | Max-Planck-Institut
Further information:
http://www.mpic.de

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Controlling organ growth with light

19.11.2018 | Life Sciences

New way to look at cell membranes could change the way we study disease

19.11.2018 | Life Sciences

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>