Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metadynamics technique offers insight into mineral growth and dissolution

24.01.2012
By using a novel technique to better understand mineral growth and dissolution, researchers at the Department of Energy's Oak Ridge National Laboratory are improving predictions of mineral reactions and laying the groundwork for applications ranging from keeping oil pipes clear to sequestering radium.

The mineral barite was examined to understand mineral growth and dissolution generally, but also because it is the dominant scale-forming mineral that precipitates in oil pipelines and reservoirs in the North Sea. Oil companies use a variety of compounds to inhibit scale formation, but a better understanding of how barite grows could enable them to be designed more efficiently.

Additionally, barium can trap radium in its crystal structure, so it has the potential to contain the radioactive material.

In a paper featured on this month's cover of the Journal of the American Chemical Society, the ORNL-led team studied barite growth and dissolution using metadynamics, a critical technique that allows researchers to study much slower reactions than what is normally possible.

"When a mineral is growing or dissolving, you have a hard time sorting out which are the important reactions and how they occur because there are many things that could be happening on the surface," said Andrew Stack, ORNL geochemist and lead author on the paper. "We can't determine which of many possible reactions are controlling the rate of growth."

To overcome this hurdle, ORNL Chemical Sciences Division's Stack started with molecular dynamics, which can simulate energies and structures at the atomic level. To model a mineral surface accurately, the researchers need to simulate thousands of atoms. To directly measure a slow reaction with this many atoms during mineral growth or dissolution might take years of supercomputer time. Metadynamics, which builds on molecular dynamics, is a technique to "push" reactions forward so researchers can observe them and measure how fast they are proceeding in a relatively short amount of computer time.

With the help of metadynamics, the team determined that there are multiple intermediate reactions that take place when a barium ion attaches or detaches at the mineral surface, which contradicts the previous assumption that attachment and detachment occurred all in a single reaction.

"Without metadynamics, we would never have been able to see these intermediates nor determine which ones are limiting the overall reaction rate," Stack said.

To run computer simulations of mineral growth, researchers used the Large-scale Atomic/Molecular Massively Parallel Simulator, a molecular dynamics code developed by Sandia National Laboratories. Co-authors on the paper are the Curtin University (Australia) Nanochemistry Research Institute's Paolo Raiteri and Julian Gale.

In a podcast (http://pubs.acs.org/JACSbeta/coverartpodcasts) from the American Chemical Society, Andrew Stack talks about his metadynamics research.

The research was sponsored by the DOE Office of Science. ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov

Emma Macmillan | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht Dead cells disrupt how immune cells respond to wounds and patrol for infection
21.05.2019 | University of Sheffield

nachricht New study shows: Tropical corals reflect ocean acidification
21.05.2019 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers

22.05.2019 | Power and Electrical Engineering

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>