Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metabolic protein plays unexpected role in tumor cell formation and growth

07.11.2011
Findings point to possible personalized brain tumor therapy with Src inhibitors

The embryonic enzyme pyruvate kinase M2 (PKM2) has a well-established role in metabolism and is highly expressed in human cancers. Now, a team led by researchers at the University of Texas MD Anderson Cancer Center reports in advance online publication of the journal Nature that PKM2 has important non-metabolic functions in cancer formation.

"Our research shows that although PKM2 plays an important role in cancer metabolism, this enzyme also has an unexpected pivotal function – it regulates cell proliferation directly," said senior author Zhimin Lu, M.D., Ph.D., associate professor in the Department of Neuro-Oncology at MD Anderson. "Basically, PKM2 contributes directly to gene transcription for cell growth – a finding that was very surprising."

The researchers demonstrated that PKM2 is essential for epidermal growth factor receptor (EGFR)–promoted beta-catenin activation, which leads to gene expression, cell growth and tumor formation.

They also discovered that levels of beta-catenin phosphorylation and PKM2 in the cell nucleus are correlated with brain tumor malignancy and prognosis and might serve as biomarkers for customized treatment with Src inhibitors.

In response to epidermal growth factor (EGF), the team found, PKM2 moves into the cell nucleus and binds to beta-catenin that has had a phosphate atom and three oxygen atoms attached at a specific spot called Y333 by the protein c-Src. This binding is essential for beta-catenin activation and expression of downstream gene cyclin D1. This newly discovered way to regulate beta-catenin is independent of the Wnt signaling pathway previously known to activate beta-catenin.

One enzyme controls both cancer cell metabolism and cell cycle progression

In metabolism, PKM2 enhances oxygen-driven processing of sugar known as aerobic glycolysis or the Warburg effect found in tumor cells.

"Cancer cell metabolism and cancer cell cycle progression, which are essential for tumor formation, are conventionally thought to be regulated primarily by distinct signaling complexes," Lu said. The new findings integrate the two major mechanisms for regulating cancer cell growth by a key metabolic enzyme. "These two important regulatory processes are under the control of pyruvate kinase M2."

New insight into brain malignancies and cancer therapy

Beta-catenin activation that is independent of the Wnt signaling pathway have been observed in many types of cancer. This study reveals a critical mechanism underlying Wnt-independent beta-catenin activation and indicates that c-Src-phosphorylated beta-catenin and nuclear PKM2 are independent predictors of glioma malignancy.

The researchers analyzed brain tumors in 84 patients who had been treated with radiation and chemotherapy after surgery. Those who had low beta-catenin Y333 phosphorylation or low expression of PKM2 in the nucleus (28 cases each) had a median survival of 185 weeks and 130 weeks, respectively.

Median survival decreased for those who had high levels of beta-catenin phosphorylation or nuclear PKM2 expression (56 cases each) to 69.4 weeks and 82.5 weeks, respectively.

Findings include:

PKM2-dependent beta-catenin activation is instrumental in EGFR-promoted tumor cell proliferation and brain tumor development.
c-Src activity, beta-catenin Y333 phosphorylation, and PKM2 nuclear accumulation are positively correlated in human glioblastoma specimens.

Levels of beta-catenin phosphorylation and nuclear PKM2 are correlated with grades of glioma malignancy and prognosis.

Personalized therapy with Src inhibitors

One potential implication of their research is the potential use of c-Src-dependent beta-catenin Y333 phosphorylation levels as a biomarker for selecting patients for treatment.

"This finding is very important because EGFR-based therapy is not very efficient due to drug resistance, and cancer patients need alternative treatment strategies," Lu said. "Thus, this discovery can potentially serve as a guideline for personalized cancer therapy in the treatment of glioma and other tumors with Src inhibitors."

Src inhibitors include dasatinib, which has been approved by the FDA for leukemia treatment, or bosutinib and saracatinib, which are in clinical trials.

Co-authors with Lu are: first author Weiwei Yang, Ph.D, Yan Xia, Ph.D., Haitao Ji, Ph.D., Yanhua Zheng, Ph.D., and Ji Liang, Ph.D., all of MD Anderson's Brain Tumor Center and Department of Neuro-Oncology; Wenhua Huang, Ph.D., of Jiaxing Xinda Biotechnology Company, Jiaxing, Zhejiang, China; Xiang Gao, Ph.D., of Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China; and Kenneth Aldape, M.D., of MD Anderson's Department of Pathology.

This work was supported by grants from the National Cancer Institute and the Cancer Prevention and Research Institute of Texas (CPRIT), an American Cancer Society Research Scholar Award and an institutional research grant from The University of Texas MD Anderson Cancer Center.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>