Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meta-Analysis Reveals Bacteria-Virus Infection Patterns

29.06.2011
Bacteria are common sources of infection, but these microorganisms can themselves be infected by even smaller agents: viruses. A new analysis of the interactions between bacteria and viruses has revealed patterns that could help scientists working to understand which viruses infect which bacteria in the microbial world.

A meta-analysis of the interactions shows that the infection patterns exhibit a nested structure, with hard-to-infect bacteria infected by generalist viruses and easy-to-infect bacteria attacked by both generalist and specialist viruses.

“Although it is well known that individual viruses do not infect all bacteria, this study provides an understanding of possibly universal patterns or principles governing the set of viruses able to infect a given bacteria and the set of bacteria that a given virus can infect,” said Joshua Weitz, an assistant professor in the School of Biology at the Georgia Institute of Technology.

Discovering this general pattern of nested bacteria-virus infection could improve predictions of microbial population dynamics and community assembly, which affect human health and global ecosystem function. Knowing the patterns of which bacteria are susceptible to which viruses could also provide insights into strategies for viral-based antimicrobial therapies.

The results of the meta-analysis were published June 27, 2011 in the early edition of the journal Proceedings of the National Academy of Sciences. The work was sponsored by the James S. McDonnell Foundation, the Defense Advanced Projects Research Agency and the Burroughs Wellcome Fund.

Georgia Tech physics graduate student Cesar Flores, Michigan State University zoology graduate student Justin Meyer, Georgia Tech biology undergraduate student Lauren Farr, and postdoctoral researcher Sergi Valverde from the University Pompeu Fabra in Barcelona, Spain also contributed to this study.

The research team compiled 38 laboratory studies of interactions between bacteria and phages, the viruses that infect them. The studies represented approximately 12,000 distinct experimental infection assays across a broad spectrum of diversity, habitat and mode of selection. The studies covered a 20-year period and included hundreds of different host and phage strains.

The researchers converted each study into a matrix with rows containing bacterial types, columns containing phage strains, and cells with zeros or ones to indicate whether a given pair yielded an infection. Then they applied a rigorous network theory approach to examine whether the interaction networks exhibited a nonrandom structure, conformed to a characteristic shape, or behaved idiosyncratically -- making them hard to predict.

Of the 38 studies, the researchers found 27 that showed significant nestedness. Nestedness was measured by the extent to which phages that infected the most hosts tended to infect bacteria that were infected by the fewest phages. The researchers used statistical tests to rule out forms of bias. However, because the majority of the data consisted of closely related species, the researchers anticipate that more complex patterns of infection may form with species with more genetic diversity.

“Considering the large range of taxa, habitats and sampling techniques used to construct the matrices, the repeated sampling of a nested pattern of host-phage infections is salient, but the process driving the nestedness is not obvious. The pattern suggests a common mechanism or convergent set of mechanisms underlying microbial co-evolution and community assembly,” explained Weitz.

The researchers examined three hypotheses to explain the nestedness pattern based on biochemical, ecological and evolutionary principles, but found that additional experiments will be required to determine why this pattern occurs so often.

This meta-analysis demonstrated the utility of network methods as a means for discovering novel interaction patterns. According to the researchers, viewing host-phage interaction networks through this type of unifying lens more often will likely unveil other hidden commonalities of microbial and viral communities that transcend species identity.

This research was supported in part by the Defense Advanced Research Projects Agency (DARPA) (Award No. HR0011-09-1-0055). The content is solely the responsibility of the principal investigator and does not necessarily represent the official views of DARPA.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA
Media Relations Contacts: Abby Robinson (abby@innovate.gatech.edu; 404-385-3364) or John Toon (jtoon@gatech.edu; 404-894-6986)

Writer: Abby Robinson

Abby Robinson | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>