Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Memories of movement are replayed randomly during sleep

25.02.2019

Place cells in hippocampus randomly replay memories of movement in open environments – Study published in Neuron

Sleep is far from an inactive time for the brain: while rats (and humans) are asleep, neurons in the hippocampus fire rapidly. After a rat has repeatedly moved from one spot to another, the same neurons that fired while the rat moved “replay” this firing while the rat is asleep, i.e. they fire in the same, but much quicker, pattern.


After exploring an open environment, neurons fire in places the rat has explored, but following random trajectories.

Grafik: Federico Stella

Previously, it was thought that replay patterns only correspond to trips rats had made repeatedly while awake. Writing in Neuron today, Postdoc Federico Stella and Professor Jozsef Csicsvari at the Institute of Science and Technology Austria (IST Austria), show that also when rats roam around freely, the hippocampus replays during sleep, but it does so in a random manner that resembles the famous Brownian motion known from randomly moving particles.

Place cells are cells in the hippocampus that fire when we (or the rats performing the experiments) are in a certain location. In order to form a memory, to be able to recall it and make a decision, they need to replay the firing pattern during sleep. The replay is easy to see in the data and happens at a fast pace, Csicsvari explains: “When a rat is asleep, the hippocampus is silent. But suddenly, lots of place cells fire, then the hippocampus falls silent again. This firing is very time-compressed. One second of firing activity during wakefulness corresponds to about 10 milliseconds of firing when the animal is asleep.”

Open environment replaces maze

Previous studies focused on replay after rats visited locations in a maze in a certain order. They found that the order in which place cells fire corresponds to the rat’s movement, and this replay pattern was also observed during sleep. In the new study, Csicsvari and Stella instead investigated what happens when a rat moves through an open field environment, like a box. The researchers let the animals run around the environment while they dropped food rewards randomly, all the while recording how up to 400 place cells fire at the same time. They then recorded how the same place cells fired while the rat was asleep.

What they found was unexpected, Csicsvari says. “Neurons fire in places the rat has explored, but the place sequence expressed by the firing follows random trajectories. Surprisingly, these random trajectories are similar to Brownian motion, the random movement seen when particles move, collide and change direction.”

A precise statistic defines whether a random process follows Brownian motion or not. “When we did the stats, we found that the replay patterns follow Brownian motion. But this didn’t coincide with the actual movement of the animal – the rat hadn’t run about randomly. Instead, the complex circuit of the hippocampus generates a pattern that is like a simple physical situation.”

Advances in measurement techniques

This new finding was possible only because of the rapid advancement of recording techniques, says Stella. “Five years ago, it was thought that when a rat runs around randomly, only single places are replayed. Now that we can record from hundreds of place cells at the same time, we can distinguish firing between cells that are located close to each other – previously mistaken as the same area firing.”

Replay is an abstraction of experience

The random replay gives researchers an insight into the circuit dynamics of the hippocampus, Csicsvari explains. “In an experimental environment like ours, in which the animals don’t learn about the environment through for example hidden food rewards, the hippocampus generates firing trajectories on its own. Our work shows that the brain circuit itself has a complex dynamic, which influences how neurons fire. Experience probably acts as a constraint on what can possibly be replayed.”

Stella sees random replay as an abstraction of a rat’s experience. “This abstraction could be used for cognitive purposes, such as planning new behavior in the same environment, or for generalizing across different experiences.” In the future, Stella plans to investigate the role of replay in the post-processing of memories as well as how rats can use replay to plan behavior. “How is randomness affected when the rat has an intention? That’s what I’d like to know now.”

About IST Austria
The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas. http://www.ist.ac.at

Wissenschaftliche Ansprechpartner:

Prof. Jozsef Csicsvari
Institute of Science and Technology Austria (IST Austria)
Am Campus 1
A – 3400 Klosterneuburg
Phone: +43 (0)2243 9000-4301
E-mail: jozsef.csicsvari@ist.ac.at

Originalpublikation:

Federico Stella, Peter Baracskay, Joseph O’Neill, and Jozsef Csicsvari: Hippocampal Reactivation of Random Trajectories Resembling Brownian Diffusion, Neuron, 2019
DOI: 10.1016/j.neuron.2019.01.052

Weitere Informationen:

http://ist.ac.at/research/research-groups/csicsvari-group/ Website of research group
https://www.cell.com/neuron/fulltext/S0896-6273(19)30079-0 Paper in Neuron

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht To proliferate or not to proliferate
21.03.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Discovery of a Primordial Metabolism in Microbes
21.03.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>