Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism underlying the relationship between aging, stress and heart attacks discovered

11.06.2019

Aging and stress lead to an increased risk of disease and intensified inflammatory processes. We don’t know the underlying reason. What we do know, however, is that aging and stress have an impact on epigenetics, i.e., they influence whether certain genes are transcribed stronger, weaker or not at all. Epigenetic changes occur normally but they can be accelerated by aging and stress. The more stress, the quicker the “epigenetic aging”. Researchers at the Max Planck Institute of Psychiatry have tackled the question of whether the epigenetic effects caused by aging and stress can influence the function of molecules that are involved in inflammatory processes.

The results of their study have recently been published in the renowned scientific journal PNAS. First author Anthony Zannas and his colleagues evaluated the data of more than 3,000 volunteers aged between 18 and 87 years.


They demonstrated that epigenetic changes caused by stress and aging are associated with immune changes that are decisive for inflammatory processes in cardiovascular diseases. Higher stress levels and aging together led to epigenetic changes that promoted inflammation and increased risk of having a heart attack.

The epigenetic effect of stress and aging was reflected in the reduction of the so-called DNA methylation of the gene FKBP5. The protein it codes, which is involved in stress physiology, is stronger transcribed through this process. The authors found that stronger transcription leads to an increased inflammatory reaction through activation of the important immune regulator NF-kB.

This in turn can contribute to increased risk of cardiovascular diseases. “The epigenetic changes triggered by aging and stress and the associated alterations in immune function can be a risk factor for inflammation and heart attacks,” Zannas sums up. In other words, patients who had a heart attack show exactly the same epigenetic changes that are caused by increased stress and accelerated aging.

The Max Planck researchers also verified the reverse effect at the cellular level: Inhibition or deletion of FKBP5 in cultured immune cells inhibited the alterations in NF-kB signaling.

Novel treatment offers

The results suggest that epigenetic effects caused by aging and stress accelerate inflammatory processes. They might therefore play a decisive role in the development of cardiovascular diseases. “We were able to identify a mechanism that might explain the increased incidence of cardiovascular diseases in patients with stress-related psychiatric diseases,” says Elisabeth Binder, Director at the Max Planck Institute of Psychiatry.

The epigenetic modifications described here and the changes in the immune system might serve as biomarkers and help to identify people at an increased risk of diseases, such as heart attacks. The research into the correlations between stress, aging and heart diseases respectively epigenetic changes and inflammatory processes may lead to novel treatments for stress-related diseases.

Originalpublikation:

https://doi.org/10.1073/pnas.1816847116

Anke Schlee | Max-Planck-Institut für Psychiatrie
Further information:
http://www.psych.mpg.de

More articles from Life Sciences:

nachricht Learning from Nature’s Bounty: New Libraries for Drug discovery
11.06.2019 | Universität Basel

nachricht Deceptively simple: Minute marine animals live in a sophisticated symbiosis with bacteria
11.06.2019 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

Im Focus: 2D crystals conforming to 3D curves create strain for engineering quantum devices

A team led by scientists at the Department of Energy's Oak Ridge National Laboratory explored how atomically thin two-dimensional (2D) crystals can grow over 3D objects and how the curvature of those objects can stretch and strain the crystals. The findings, published in Science Advances, point to a strategy for engineering strain directly during the growth of atomically thin crystals to fabricate single photon emitters for quantum information processing.

The team first explored growth of the flat crystals on substrates patterned with sharp steps and trenches. Surprisingly, the crystals conformally grew up and...

Im Focus: Experiments and calculations allow examination of boron's complicated dance

Work opens a path to precise calculations of the structure of other nuclei.

In a study that combines experimental work and theoretical calculations made possible by supercomputers, scientists have determined the nuclear geometry of two...

Im Focus: Fraunhofer HHI and IAF demonstrate the first wireless real-time video transmission using Terahertz

The Fraunhofer Heinrich Hertz Institute HHI develops next-generation wireless transmission systems (Beyond 5G) based on Terahertz (THz) technologies. The THz technology supports significantly higher data transmission rates than current 4G and 5G mobile wireless technologies. Researchers of the department Photonic Networks and Systems, in collaboration with the Fraunhofer Institute for Applied Solid State Physics IAF, have succeeded in transmitting a 4K video in real-time over a wireless THz link. This was the first time this technology was successfully realized in a real-time experiment. A wireless transmission capacity of 100 Gbit/s was demonstrated over the THz link.

Requirements placed on transmission capacities in communication networks are continuously growing, driven by new applications such as Industry 4.0, autonomous...

Im Focus: Colliding lasers double the energy of proton beams

Researchers from Sweden's Chalmers University of Technology and the University of Gothenburg present a new method which can double the energy of a proton beam produced by laser-based particle accelerators. The breakthrough could lead to more compact, cheaper equipment that could be useful for many applications, including proton therapy.

Proton therapy involves firing a beam of accelerated protons at cancerous tumours, killing them through irradiation. But the equipment needed is so large and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Organic electronics: a new semiconductor in the carbon-nitride family

07.06.2019 | Materials Sciences

Radon inferior to radium for electric dipole moments (EDM) searches

07.06.2019 | Physics and Astronomy

NIH HIV experts prioritize research to achieve sustained ART-free HIV remission

07.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>