Mechanism behind demethylation pinpointed in APC gene mutants

It has been known for some time that mutations in the APC gene occur in more than 85 percent of all sporadic colon cancers. Now researchers at Huntsman Cancer Institute at the University of Utah demonstrate in a study featured today in Cell the mechanism by which mutation of the APC gene affects a cellular process known as DNA methylation. DNA methylation is a chemical modification made to DNA that plays an important role in dictating how DNA is read and interpreted by a cell.

The group, led by David Jones, Ph.D., and Bradley Cairns, Ph.D., have now linked loss of Apc with DNA demethylase, an enzyme system that erases DNA methylation. Studies using human tissues and zebarafish demonstrate that this system is highly active in tissues harboring mutated Apc and may provide an explanation for the previously known loss of DNA methylation seen in early stage tumors. The activity of the DNA demethylase appears to stall the normal development of intestinal cells, leaving them in a stem cell-like state. Normal development was restored upon inhibition of the DNA demethylase system. The experiments conducted by the group also demonstrated that the mechanistic connection between APC mutation and demethylation is conveyed through changes in the amount of retinoic acid (RA), an important regulatory compound derived from dietary vitamin A.

“We believe that clarification of the mechanism leading to demethylation will have broad implications for a variety of cancers. Our increased understanding of the mechanics connecting APC mutation and demethylation presents new opportunities for colon cancer intervention and may lead the way to developing a truly finely tuned approach to treatment,” said Jones. Cairns added, “Since the mechanism of action of the demethylase can inherently create new mutations, misregulation of the system could underlie the occurrence of mutations in additional oncogenes. Its inhibition may therefore allow us to both prevent and treat certain cancers.”

The mission of Huntsman Cancer Institute (HCI) at The University of Utah is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care. HCI is a National Cancer Institute-Designated Cancer Center, which means that it meets the highest national standards for cancer care and research and receives support for its scientific endeavors. HCI is also a member of the National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of the world's leading cancer centers that is dedicated to improving the quality and effectiveness of care provided to patients with cancer. For more information about HCI, please visit www.huntsmancancer.org.

Media Contact

Linda Aagard EurekAlert!

More Information:

http://www.utah.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors