Mechanism behind cocaine craving identified

Earlier research has shown that these cells become more excitable when a person takes drugs. To find out the functional meaning of this, these researchers used a mouse model for cocaine dependence.

When they blocked the cells' receptors for glutamate ­- the brain's most important signal substance -­ the risk of relapsing into addiction vanished. The findings are being published in the highly ranked journal Neuron.

Dopamine-producing nerve cells are central to the brain's reward system. Dependence-inducing drugs cause concentrations of dopamine to rise in the surroundings, which in turn affects other nerve cells and brings about various physical and mental reactions.

Cocaine has a very rapid impact on dopamine levels, which explains why it is one of the most addictive drugs.

“When you take cocaine, the number of glutamate receptors increases, rendering the cell more excitable. When we block this process, we prevent relapses into addiction. This is interesting clinically since that is the phase when we can get hold of patients,” says David Engblom, a neurobiologist at Linköping University and the study's lead author.

An addict who wants to give up drugs could thus be offered a 'vaccination' against relapsing. But much more research remains to be done before such treatment can become a reality.

The article “Glutamate Receptors on Dopamine Neurons Control the Persistence of Cocaine-Seeking” by David Engblom et al. is being published in Neuron on August 14.

Contact:
David Engblom, Assistant professor,
Division of Cell Biology,
cell phone: +46 (0)70-2611302; e-mail: daven@ibk.liu.se

Media Contact

Åke Hjelm idw

More Information:

http://www.vr.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors