Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanical properties and microstructure of cranial and beak bones of the woodpecker and the lark

10.04.2012
The bio-mechanisms of the woodpecker's resistance to head impact injury are an interesting scientific question.

Professor FAN Yubo and his group from the Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, and the School of Materials Science and Engineering, Wuhan University of Technology, set out to study this problem.


These are SEM images of the cranial bone and beak bone of the great spotted woodpecker and the lark Cranial bone of (a) woodpecker and (b) lark; beak of (c) woodpecker and (d) lark. Credit: © Science China Press

After 3 years of innovative research, they are making progress in uncovering the explanation for the avoidance of head impact injury by woodpeckers. Their work, entitled "Comparative study of the mechanical properties, micro-structure, and composition of the cranial and beak bones of the great spotted woodpecker and the lark bird", was published in SCIENCE CHINA Life Sciences, 2011, Vol. 54 (11).

Head injury, caused by a sudden impact or by a change in the linear or angular velocity of the head, is a leading cause of morbidity and death in both industrialized and developing countries. It is estimated that brain injuries account for 15% of the overall burden of fatalities and disabilities and are the leading cause of death in young adults. Woodpeckers clearly are adapted to managing impact forces, allowing them to peck rapidly without incurring brain or eye injury. This ability has attracted wide attention not only by ornithologists and biologists but also by researchers in the mechanical and electronic sciences. Previous studies suggested that impact injury to the brain might be avoided by powerful muscles, or by drilling behavior, or by a special orientation of the brain within the skull compared with humans. However, there have been few systematic analyses of the properties of woodpecker's skull.

Therefore, to understand how woodpeckers are adapted to pecking at high-speeds and frequency, the group carried out a comparative study of the mechanical properties, microstructure and composition of the cranial bone and beak of this bird, which represent remarkable examples of nanofabrication and self-assembly, perfected by natural evolution over millions of years.

The ultimate strength of woodpecker's cranial bone was found to be markedly higher than that of the lark. In contrast, there was no significant difference between the two birds in the ultimate strengths of their beaks. More plate-like spongy bone was present in the cranial bone of the woodpecker, while the cranium of the lark contained more rod-like structures. It appears that the mechanical properties and microstructure are closely linked. The larger number of plate-like structures, greater thickness and numbers of trabeculae, and the closer spacing between individual trabeculae in the woodpecker cranial bone would tend to resist deformation during pecking, which would decrease the stress on the brain. Conversely, the greater quantity of rod-like structures and thinner trabeculae of the woodpecker's beak would lead to greater deformation during impact. As the impact load is absorbed and distributed primarily by the beak, its transmission to the brain would be decreased. Together these parameters combine to produce quite similar ultimate strengths of the beaks of the woodpecker and the lark.

It was concluded that, compared with the lark, the cranial bone of the woodpecker achieves a higher ultimate strength and resistance to impact injury as a result of its unique microstructure, including more plate-like trabecular bone, greater thickness, greater numbers and closer spacing of trabeculae, and a higher proportion of bone mineral. These distinctive mechanical and structural properties, and compositions, of the cranial and beak bones of the woodpecker provide excellent resistance to head impact injury at a high speed and deceleration. Such information may perhaps inspire the design and optimization of protective headgear for humans.

See the article: WANG L Z, ZHANG H Q, and FAN Y B. Comparative study of the mechanical properties, micro-structure, and composition of the cranial and beak bones of the great spotted woodpecker and the lark bird. SCI CHINA Life Sci, 2011, 54(11):1036-1041.

Fan Yubo | EurekAlert!
Further information:
http://www.buaa.edu.cn

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>