Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the world by the brain

26.05.2011
Scientists identify circuits with which rats map the environment

For the first time, researchers at Humboldt Universität zu Berlin, Bernstein Center Berlin and NeuroCure Cluster of Excellence explain how the cellular architecture of spatial memory is related to its role in orientation. In the journal Neuron, they present a new technique with which they could examine the activity and interconnection of individual neurons in freely moving animals. This method allowed them to identify the circuits with which rats capture and learn the spatial structure of their environment.


The specific wiring of two distinct cell types is the basis of our spatial memory. Henrik Gerold Vogel/ pixelio.de

Yet, it is hardly understood, which cells in our brain communicate when with each other. So far, scientists had to choose: they either investigated structure and connectivity by staining the cells or they measured their activity. To capture both simultaneously was meant to be almost impossible, particularly in freely-moving animals.

Now, Prof. Michael Brecht, head of the Bernstein Center Berlin, and his colleague Dr. Andrea Burgalossi were able to solve these problems with a new method. In collaboration with micro-mechanics of the Technische Universität Berlin, they developed a novel stabilization mechanism for the recording electrode. This allowed them to label cells in the spatial memory system of the rat (the medial entorhinal cortex) and at the same time to record their activity in freely-moving animals exploring their environment. Anatomical analyses provided important information about the interconnections of the recorded cells. With this new method the scientists could visualize for the first time the neuronal circuits involved in spatial memory formation.

In the rat’s spatial memory system, two major cell types contribute to orientation and spatial memory formation. When rats explore an environment, a subset of cells are active at the intercept points of a virtual grid spanning the entire surface of the environment. These cells, known as “grid cells”, are believed to form a map-like representation of the environment which enables the animal to “measure” distances and to estimate its position in space. The other cell type is active only when the animal faces a certain direction. These cells seem to act like a compass for the animal.

How grid and head-direction cells cooperate for orientation and spatial learning was previously unknown. Michael Brecht and Andrea Burgalossi now noted that these two functional cell types are organized in well-defined anatomical patches, and they are strictly separated from each other. By visualizing the connections between the two cell types, the researchers could also reconstruct how they cooperate for the emergence of spatial memory.

Interestingly, they discovered very selective interconnections between the two systems of cells, which could enable the animal to integrate the spatial map information with the heading-direction information. These so-called “microcircuits” might therefore constitute the basic neural units for generating a global sense of spatial orientation. Alzheimer's disease has its origin in the medial entorhinal cortex. Patients often suffer, besides other things, from disorientation. Knowledge about the organization and the interconnections between cells in this region of the brain could therefore also contribute to a fundamental understanding of Alzheimer's disease.

The Bernstein Center Berlin is part of the Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. It was named in honor of the German physiologist Julius Bernstein (1835–1917).

Original publication:
Burgalossi et al., Microcircuits of Functionally Identified Neurons in the Rat Medial Entorhinal Cortex, Neuron (2011), doi:10.1016/j.neuron.2011.04.003
For further information please contact:
Prof. Dr. Michael Brecht
Michael.Brecht@bccn-berlin.de
Bernstein Center for Computational Neuroscience
Humboldt-Universität zu Berlin
Philippstr. 13, 10115 Berlin
Tel: 030 2093-6770
Weitere Informationen:
http://www.bccn-berlin.de Bernstein Center Berlin for Computational Neuroscience
http://www.nncn.de National Bernstein Netwerk for Computational Neuroscience
http://www.hu-berlin.de Humboldt Universität zu Berlin
http://www.neurocure.de NeuroCure Cluster of Excellence

Johannes Faber | idw
Further information:
http://www.bccn-berlin.de

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>