Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Measuring entropy on a single molecule


A scanning-tunneling microscope (STM), used to study changes in the shape of a single molecule at the atomic scale, impacts the ability of that molecule to make these changes – the entropy of the molecule is changed and, in turn, can be measured. The study is published in Nature Communications

Chemical reactions, especially in biological systems, oftentimes involve macromolecules changing their shape – their “configuration” – for instance, by rotation or translational movements. To study what drives or impedes molecular mobility in more detail chemists and physicists turn to simplified model systems such as individual molecules adhering to a surface.

Molecular structure of dibutyl sulfide: The molecule looks like a tiny propeller. The yellow Sulphur molecule in the middle acts like the propeller shaft. The hydrocarbons (grey) are the propeller blades.

These can then be investigated at temperatures just a few degrees above absolute zero (-273 degrees Celsius) using, for instance, a scanning tunneling microscope (STM), which can probe numerous physical properties of surfaces at the atomic level.

A well-known molecule for this kind of studies is dibutyl-sulfide (DBS), a lengthy hydrocarbon with a central Sulphur atom, through which the molecule can be absorbed (attached) to a gold surface. Depending on the temperature the two “arms” rotate more or less easily about the central Sulphur “axis”.

There are two physical parameters that are typically used to describe how free to move a molecule on a surface is: the energy barrier it has to overcome to carry out the movement in question – for chemical reactions this barrier is called activation energy –, and the attempt rate, which one can picture as the number of attempts made by the molecule to initiate the movement. And the higher the temperature, the more the two DBS arms rotate (because, at higher temperatures, they are more likely to overcome the energy barrier).

Two weeks of probing a single molecule – with picometer precision

These rotating molecules caught the interest of Empa physicist Hans Josef Hug because their fluctuation rates can be controlled by temperature. This made them an ideal model system for studying non-contact friction and its associated energy losses at the atomic scale.

Unfortunately one cannot simply measure non-contact molecular friction with off-the-shelve instruments; but Hug and his team had built a sophisticated low-temperature STM-scanning force microscope (SFM) system capable of operating at temperatures between 4.5 Kelvin and room temperature under ultra-high vacuum conditions with picometer precision. This research attracted Eric Hudson from Pennsylvania State University (PSU) to spend a sabbatical at Hug’s group. As is commonly done in experimental science the Empa-PSU team began by repeating others’ STM work on this molecule.

PhD student Jeffrey Gehrig and postdoctoral researcher Marcos Penedo subjected the DBS molecule to an exhaustive test: over two weeks they mapped the molecule’s rotation rates on a 50 by 50 picometer square grid at eight different temperatures between 5 and 15 Kelvin. When the team evaluated the measured hopping rates to plot the energy barriers for the DBS rotations as a function of the position of STM tip, this “energy landscape” for DBS was not uniform; instead it showed valleys and ridges.

In other words: depending on where they positioned the STM tip the DBS arms rotated more or less frequently – at the very same temperature, as the team reports in the recent issue of “Nature Communications”. “That was totally unexpected,” says Hug. “It meant that the tip – which is still relatively far away from the molecule and in no way touches it – somehow influences the molecule’s mobility.”

When nature is revealing its secrets

And not only that: when Gehrig and Penedo plotted the molecule’s attempt rates they obtained a map that looked almost identical to the one with the energy barriers. “This is when I thought: `Hang on a second, nature is trying to tell us something’,” recalls Hug. “Entropy is often thought of as a measure of disorder or randomness, but here it is determined by the number of shapes that the molecule could potentially take, as well as by the number of different ways that the molecule could meet the energy requirements to change its configuration,” explains Eric Hudson, associate professor of physics at PSU.

“If the tip of the STM increases the energy required by the molecule to make a change in shape, it is also increasing entropy in the system. In essence, a transition requires a potentially large number of small-energy excitations to co-occur to overcome the energy barrier for a configuration change. The larger the number of excitations required, the more ways in which those excitations may be collected. This multiplicity gives rise to entropy.”

The research team was interested in understanding what drives a molecule’s ability to make changes to its shape — a common requirement of chemical reactions and biological processes., The results of the Empa-PSU team imply that entropy plays a decisive role for the dynamics of the molecule even at very low temperatures where a molecule’s degree of freedom (and thus its “configurational” entropy) is usually significantly reduced and entropy is considered to only play a minor role.

“Although entropy is well understood in thermodynamics, it remains more difficult to grasp than other physical quantities”, admits Hug, “perhaps because it is not so much a “property” as a measure of information.” And maybe also because we tend to have a strong association between entropy and chaos – or the “dark side” of entropy –, be it in the kids’ room or on one’s desk.

InfoBox: Entropy, the mysterious “force” behind spontaneous processes

Imagine dropping a drop of dark blue ink into a glass of water. As time goes by, we will see that the ink mixes with the water until it is homogeneously colored, as if an “invisible force” was at play. Would this process ever reverse on its own and concentrate the ink back into a dark blue droplet? Of course not. Or, as a physicist might put it: “with vanishing probability.”

Such everyday experience of what happens spontaneously in isolated systems and what does not is captured by the concept of entropy, which is linked to probability. Thus isolated systems – the ink added to the water glass, say – evolve over time to adopt the most probable of all possible configurations, the one with the highest entropy. Perhaps not surprisingly this is often the most disordered one.

In the case of the rotation of the DBS molecule studied by the Empa-PSU team (see main article) the fascinating observation is that raising the hurdle for the molecule’s rotation – the energy barrier for the movement – simultaneously provides it with a greater number of pathways to overcoming it – hence an increase in entropy. “These findings imply that our home-built STM-SFM becomes a perfect tool for studying a single molecule’s entropy in great detail,” says Empa physicist Miguel A. Marioni.

Weitere Informationen:

Rainer Klose | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>