Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Scientists Show How Hematopoietic Stem Cell Development Is Regulated

06.10.2009
During cell division, whether hematopoietic stem cells (HSCs) will develop into new stem cells (self-renewal) or differentiate into other blood cells depends on a chemical process called DNA methylation.

These were the findings of researchers at the laboratory of Dr. Frank Rosenbauer of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch in cooperation with the laboratory of Professor Sten Eirik W. Jacobsen (Lund University, Sweden and the University of Oxford, England). Furthermore, the researchers showed that DNA methylation also plays a crucial role for cancer stem cells (Nature Genetics, online, doi: doi:10.1038/ng.463)*.

A group of three enzymes, the DNA methyltransferases (Dnmt) regulates the addition of methyl groups to the DNA (DNA methylation). One of these enzymes - Dnmt1 - is responsible for the maintenance of the marks with the methyl groups, the DNA methylation pattern, because the distribution of the methyl groups on the DNA decides which genes are transcribed and which are blocked. Researchers speak in this context of epigenetic information, in contrast to genetic information.

However, it was unclear until now whether DNA methylation plays a special role in the control of hematopoietic stem cell characteristics. From the HSCs all of the blood cells of the body are formed. Since blood cells have only a limited lifetime, the body must form new blood cells over and over again. The pool for this is generated by the HSCs.

In order to discover what function DNA methylation has for HSCs, the two doctoral students Ann-Marie Bröske and Lena Vockentanz of the MDC research laboratory of Dr. Rosenbauer switched off the enzyme Dnmt1 in the mice. As a result, the animals were not viable because the hematopoietic stem cell function was completely disturbed.

By contrast, when the two researchers arranged that the HSCs formed just a little Dnmt1, the animals survived, but the HSCs lost their potential for self-renewal. Moreover, the HSCs were restricted in their formation of B cells and T cells (blood cells of the lymphatic system and important cells of the immune system).

However, the HSCs were able to form red blood cells, which are important for oxygen transport and belong to the blood cells of the myeloerythroid system. In other words, the DNA methylation level regulates which blood cell lineages develop or not from a hematopoietic stem cell.

Cancer stem cells
Methylation processes also play a role in numerous cancer diseases. As the MDC researchers were able to show, the DNA methylation by the enzyme Dnmt1 also controls the development of leukemic stem cells.

If the DNA methylation level is low, cancer stem cell renewal is restricted. Moreover, the formation of leukemic cells of B-cell lineage (acute B-cell leukemia - ALL) is blocked.

The question is whether diseased stem cells can be switched off, possibly through a blockade of the enzyme Dnmt1. Dr. Rosenbauer and his research team want to make a more detailed investigation of this question in a further project.

*DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction
Ann-Marie Bröske1*, Lena Vockentanz1*, Shabnam Kharazi2, Matthew R. Huska1, Elena Mancini3, Marina Scheller1, Christiane Kuhl1, Andreas Enns1, Marco Prinz4, Rudolf Jaenisch5, Claus Nerlov3, Achim Leutz1, Miguel A. Andrade-Navarro1, Sten Eirik W. Jacobsen2,6 and Frank Rosenbauer1
1 Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
2 Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
3 European Molecular Biology Laboratory, Mouse Biology Unit, Monterotondo, Italy
4 Department of Neuropathology, University of Freiburg, Freiburg, Germany
5 The Whitehead Institute, 9 Cambridge Center, Cambridge, MA, USA
6 Haematopoietic Stem Cell Laboratory, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, England.

*These authors contributed equally to this work.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/
http://www.medfak.lu.se/stemcellcenter/hemat_stc_lab.htm

More articles from Life Sciences:

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

Low bandwidth? Use more colors at once

17.08.2018 | Information Technology

Protecting the power grid: Advanced plasma switch for more efficient transmission

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>