Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC and FMP Researchers Identify Edema Inhibitor

05.04.2013
Researchers of the Max Delbrück Center (MDC) and the Leibniz Institute of Molecular Pharmacology (FMP) in Berlin-Buch, Germany, have now detected a substance that can prevent the accumulation of fluid in body tissue and thus edema formation.

The results of Dr. Jana Bogum (MDC/FMP) from the MDC research group led by Professor Walter Rosenthal and PD Dr. Enno Klußmann could be important in the future for the treatment of excessive fluid retention in patients with chronic heart failure. Using a novel approach, the researchers have also discovered a new molecular mechanism controlling water homeostasis in the kidneys (Journal of the American Society of Nephrology, doi:10.1681/ASN.2012030295)*.


Graphic of a renal cell with water channels (aquaporin-2, AQP2) in the cell (left image) and with aquaporin-2 in the plasma membrane (right image, above). For example, when a person is thirsty, the hormone AVP triggers a signaling cascade and thereby elicits the redistribution of the water channels from the cell interior to the plasma membrane. The cell then directs water from primary urine via other water channels (AQP3 and 4, Fig. on the right, the right side of the cell) into the bloodstream and tissues.
(Graphic: Enno Klußmann/ Copyright: MDC)


Renal principal cells with aquaporin-2 (blue) in the cell interior (image 1) and in the plasma membranes (image 2). The substance discovered by the MDC research group (4-acetyldiphyllin; image 3), prevents the redistribution of aquaporin-2 to the cell membrane. Nuclei are shown in green.


(Immunofluorescence microscopy: Jana Bogum, Kerstin Zühlke, Burkhard Wiesner, Jenny Eichhorst/ Copyright: MDC/FMP)

Every day around 1 500 liters of blood flow through the kidneys. Of this total volume, the kidneys initially filter 180 liters of primary urine, which they concentrate to two liters and then excrete as the final urine. A key regulatory step of the concentration mechanism is the release of the hormone AVP (arginine-vasopressin) from the brain. This hormone triggers a multi-step signaling cascade in the kidneys which affects water channels (aquaporins) and in particular aquaporin-2. “The water channels, specifically aquaporin-2, and their redistribution play a key role in the regulation of the water balance,” said Dr. Klußmann.

AVP, which is released from the brain upon thirst, induces aquaporin-2 located in the renal collecting duct principal cells to redistribute from the cell interior to the plasma membrane. The renal cells can then filter out the water from the primary urine flowing past the membrane via aquaporin-2. Dr. Klußmann explained: “To keep the renal cell from bursting and the body from dehydrating, the water is directed back via another group of water channels, aquaporin 3 and 4, into the bloodstream and body tissue. In contrast to aquaporin-2, these water channels are located in another domain of the plasma membrane in the renal principal cells and stay there permanently.” Once the thirst is quenched, the levels of the hormone AVP are reduced and aquaporin-2 is shuttled back into the interior of the renal cell until it is needed again.

However, if the AVP level is too high, as is the case in patients with chronic heart failure, aquaporin-2 remains permanently in the plasma membrane of the renal principal cell and directs the water continuously from the primary urine into the renal collecting duct principal cells. These cells funnel the excess water into the body tissue. “This process contributes to edema,” Dr. Klußmann said.

Discovery of how translocation of water channels can be inhibited
How can aquaporin-2 be prevented from settling permanently in the plasma membrane and thus triggering diseases or making them worse? Using a new research approach, the scientists were able to identify an inhibitor which prevents the translocation of the water channel aquaporin-2 into the cell membrane. At the same time they discovered a new regulatory mechanism of water homeostasis at the molecular level.

The researchers used “small molecules“, low molecular weight organic compounds, which penetrate well into cells. They tested 17 700 such substances in renal cells and ultimately filtered out a substance that blocks the redistribution of aquaporin-2 to the plasma membrane. The substance (4-acetyldiphyllin) prevents phosphorylation, an important biological and regulatory activation step. In particular, the compound prevents a phosphorylation reaction that is catalyzed by a protein termed protein kinase A. This protein is activated in the signaling cascade that is triggered by AVP in the renal principal cells. In the presence of 4-acetyldiphillin protein kinase A cannot add a phosphate group to aquaporin-2, with the result that the water channels can no longer redistribute to the plasma membrane.

The new research findings may not only be of interest for the treatment of edema but also for the treatment of depression. Here, by contrast, medical researchers are seeking a way to shuttle aquaporin-2 to the plasma membrane of the renal principal cell, because lithium, which is often used to treat depression, prevents aquaporin-2 from redistributing to the plasma membrane, thus causing diabetes insipidus. If AVP is not released from the brain, or if the receptor for AVP in the renal cell is defective, this likewise results in diabetes insipidus, as Professor Rosenthal discovered several years ago. The affected individuals excrete 20 liters of urine every day. A similar effect, but not quite as drastic, is caused by alcohol. Drinking lots of beer causes the body to excrete large amounts of urine. The reason – alcohol prevents the brain from releasing the hormone AVP and thus prevents the redistribution of aquaporin-2 to the plasma membrane.

*Small molecule screening to reveal mechanisms underlying aquaporin-2 trafficking

Jana Bogum1,2,3, Dorte Faust1, Kerstin Zuhlke1,2, Jenny Eichhorst2, Marie C. Moutty1,2, Jens Furkert2, Adeeb Eldahshan1, Martin Neuenschwander2, Jens Peter von Kries2, Burkhard Wiesner2, Christiane Trimpert4, Peter M.T. Deen4, Giovanna Valenti5, Walter Rosenthal1,6 and Enno Klussmann1

1Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
2Leibniz-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany
3Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Germany
4Department of Physiology, RUNMC Nijmegen, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
5Department of General and Environmental Physiology, University of Bari, Italy
6Charité University Medicine Berlin, Germany

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Detecting damage in non-magnetic steel with the help of magnetism

23.07.2018 | Materials Sciences

Researchers move closer to completely optical artificial neural network

23.07.2018 | Information Technology

Enabling technology in cell-based therapies: Scale-up, scale-out or program in-place

23.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>