Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC and Charité Researchers Tweak the Immune System to Target Cells Bearing Tumor Antigens

19.03.2015

Researchers at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch and Charité – Universitätsmedizin Berlin, Campus Berlin-Buch, have succeeded in generating cells of the immune system to specifically target and destroy cancer cells.

The research findings of Matthias Obenaus, Professor Thomas Blankenstein (MDC and Charité), Dr. Matthias Leisegang (MDC) and Professor Wolfgang Uckert (Humboldt-Universität zu Berlin and MDC) as well as Professor Dolores Schendel (Medigene AG, Planegg/Martinsried) have now been published in Nature Biotechnology online (doi:10.1038/nbt.3147)*.


This mouse possesses “high-affinity” components of the human immune system to fight cancer. (Photo and Copyright: SFB-TR 36)

The immune system of the body is trained to distinguish between “foreign” and “self” and to recognize and destroy exogenous structures. In cancer, however, the immune system appears to be quite docile in its response.

While it is capable of detecting cancer cells because they often bear characteristics (antigens) on their surfaces that identify them as pathologically altered cells, usually the immune system does not mount an attack but rather tolerates them. The reason: The cancer cells are endogenous to the body, and immune cells do not recognize them as foreign, as they would pathogens. The researchers want to break this tolerance in order to develop therapies against cancer.

T cells are the linchpin in the attack of the immune system. On their surface they have anchor molecules (receptors) with which they recognize foreign structures, the antigens of bacteria or viruses, and thus can target and destroy invaders. Cancer researchers and immunologists are attempting to mobilize this property of the T cells in the fight against cancer. The objective is to develop T cells that specifically recognize and attack only cancer cells but spare other body cells.

Now Matthias Obenaus, Professor Blankenstein, Dr. Leisegang, Professor Uckert and Professor Schendel have developed human T cell receptors (TCRs) that have no tolerance toward human cancer antigens and specifically recognize the antigen MAGE-A1, which is present on various human tumor cells. Instead of directly using human-derived TCRs, which do not mediate substantial anti-tumor effects, the scientists took a “detour” over a mouse model.

First, the researchers transferred the genetic information for human TCRs into the mice, thus creating an entire arsenal of human TCRs (Nature Medicine, doi: 10.1038/nm.2197). When the humanized mouse T cells come into contact with human cancer cells, they perceive the tumor antigens as foreign – like viral or bacterial antigens. Thus, the T cells can specifically target, attack and destroy the tumor cells.

The researchers subsequently isolated the human T-cell receptors of these mice, which are specifically targeted toward the tumor antigen MAGE-A1. Then they transferred the T-cell receptors into human T cells, thereby training them to recognize the cancer cells as foreign.

Some people possess T cells which naturally recognize MAGE-A1 on tumor cells, but only in the Petri dish. In studies using an animal model, only the human TCRs derived from mice were shown to be effective against the tumor. The TCRs from human T cells ignored the tumor completely.

The comparison with the tweaked human TCRs from the mouse model shows that the TCRs of patients cannot recognize the tumor antigens sufficiently; they are too weak. “The fact that our TCRs from the mouse are better is a strong indication that the T cells of a human are tolerant toward MAGE-A1,” said Matthias Obenaus and Professor Blankenstein.

Using the T-cell receptors they developed, the researchers are planning an initial clinical trial with patients with MAGE-A1 positive multiple myeloma, a malignant disease of the bone marrow.

*Identification of human T-cell receptors with optimal affinity to cancer antigens using antigen-negative humanized mice
Matthias Obenaus1, Catarina Leitão1,7, Matthias Leisegang1, Xiaojing Chen1, Ioannis Gavvovidis1 Pierre van der Bruggen2,3, Wolfgang Uckert1,4, Dolores J Schendel5 & Thomas Blankenstein1,6
1Max Delbrück Center for Molecular Medicine, Berlin, Germany. 2Ludwig Institute for Cancer Research, Brussels, Belgium. 3De Duve Institute, Université Catholique de Louvain, Brussels, Belgium. 4Institute of Biology, Humboldt University, Berlin, Germany. 5Medigene AG, Planegg/Martinsried, Germany. 6Institute of Immunology, Charité Campus Buch, Berlin, Germany. 7Present address: Institute for Molecular and Cell Biology, Porto, Portugal.

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/de

Weitere Informationen:

https://www.mdc-berlin.de/34982086/en/news/archive/2010/20100806-more_cancer-fig...

Barbara Bachtler | Max-Delbrück-Centrum für Molekulare Medizin (MDC) Berlin-Buch

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>