Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McMaster scientists unlock secrets of diabetes drug

04.11.2013
How and why metformin needs to interact with insulin to be effective

About 120 million people around the world with Type 2 diabetes – and two million in Canada – take the drug metformin to control their disease.

While doctors know metformin needs to interact with insulin to be effective, and that it can't lower blood sugar on its own, no one has been able to explain how and why this happens.

Researchers at McMaster University are the first to unlock that mystery with their discovery metformin works on fat in the liver. Their research is published in today's issue of the journal Nature Medicine.

"The key is that metformin doesn't work to lower blood glucose by directly working on the glucose. It works on reducing harmful fat molecules in the liver, which then allows insulin to work better and lower blood sugar levels," said Greg Steinberg, associate professor in the Department of Medicine of the Michael G. DeGroote School of Medicine.

He also holds the Canada Research Chair in Metabolism and Obesity and is a co-director of the Metabolism and Childhood (MAC)-Obesity Research Program. His research team included scientists in Alberta, Australia and Scotland.

Steinberg said that most people taking metformin have a fatty liver, which is frequently caused by obesity. "Fat is likely a key trigger for pre-diabetes, causing blood sugar to start going up because insulin can't work as efficiently to stop sugar coming from the liver."

In their detective work to uncover what causes fatty liver, the scientists studied mice that have a "genetic disruption" to a single amino acid in two proteins called acetyl-CoA carboxylase (ACC).

These proteins, which are controlled by the metabolic sensor AMP-activated protein kinase, regulate fat production as well as the ability to burn fat.

Mice with the mutated proteins developed signs of fatty liver and pre-diabetes even in the absence of obesity.

"But what was really surprising was that when obese mutant mice were given metformin, the most common and inexpensive drug prescribed to Type 2 diabetics, the drug failed to lower their blood sugar levels," said Steinberg. "It indicates the way metformin works isn't by directly reducing sugar metabolism, but instead by acting to reduce fat in the liver, which then allows insulin to work better."

Morgan Fullerton, lead author of the study, added: "Unlike the majority of studies using genetic mouse models, we haven't deleted an entire protein; we have only made a very minor genetic mutation, equivalent to what might be seen in humans, thus highlighting the very precise way metformin lowers blood sugar in Type 2 Diabetes".

"This discovery offers a huge head start in finding combination therapies (and more personalized approaches) for diabetics for whom metformin isn't enough to restore their blood sugar to normal levels," said Steinberg.

Steinberg's team at McMaster was supported by grants and fellowships from the Canadian Institutes for Health Research and the Canadian Diabetes Association.

Note to Editors: Photos of Greg Steinberg and Morgan Fullerton are available here http://fhs.mcmaster.ca/media/diabetes_drug/

For further information:

Veronica McGuire
Media Relations
Faculty of Health Sciences
McMaster University
905-525-9140, ext. 22169
vmcguir@mcmaster.ca

Veronica McGuire | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>