Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McMaster researcher leads development of promising drug for inflammation

31.03.2010
Aspirin, ibuprofen and other non-steroidal anti-inflammatory drugs (NSAIDs) remain the most common treatment to relieve symptoms of arthritis and other inflammatory disorders.

But despite their widespread use (around 2.5 million Canadians have osteoarthritis) these medications are also known to cause severe, sometimes life-threatening adverse effects within the body, particularly in the gastrointestinal tract.

A novel anti-inflammatory drug being developed and commercialized by an inflammation expert at McMaster University has shown promise in relieving symptoms of inflammation, while substantially reducing the incidence of bleeding and intestinal damage often caused by NSAIDs.

The research is published in the March issue of the British Journal of Pharmacology.

John Wallace, a pharmacologist and director of the Farncombe Family Digestive Health Research Institute at McMaster University, compared naproxen, a commonly used NSAID, to a novel anti-inflammatory drug, ATB-346, which he developed in collaboration with a team of Italian chemists and is now commercializing through his company, Antibe Therapeutics Inc.

ATB-346 is a derivative of naproxen which releases hydrogen sulfide. Evidence from animal studies suggests that in small quantities, hydrogen sulfide can protect the stomach from injury and can accelerate the healing of pre-existing ulcers.

"I've been working on NSAIDs for over 20 years," said Wallace, a professor of medicine in the Michael G. DeGroote School of Medicine at McMaster University. "This particular drug is, by far, the shining star. We've tested it in every model where it should fail, and it has performed exceptionally well."

To examine the gastrointestinal safety and anti-inflammatory effectiveness of ATB-346, Wallace and his co-investigators tested the drug in healthy rats as well as those with arthritis and inflammation. The researchers also examined the impact of the drug on rats with compromised gastrointestinal tracts, a model which mimicked the clinical scenario in which NSAIDs are frequently used and have caused damage such as bleeding and ulcers.

"From the beginning, we decided that we were going to do the most rigorous testing of any NSAID that's ever been done," Wallace said. "We very deliberately tested the drug in models where NSAIDs fail."

The researchers found that ATB-346 was at least as effective as naproxen in relieving inflammation in animal models. They also discovered that ATB-346 was in the order of 100 times safer than naproxen, causing little or no damage to the stomach and small intestine.

When given to rats with impaired gastrointestinal tracts, ATB-346 did not cause any gastric damage. Moreover, the researchers observed that it enhanced, rather than inhibited, healing of pre-existing ulcers.

Finally, unlike naproxen, ATB-346 had no effect on blood pressure in rats with hypertension, suggesting the drug may have less cardiovascular risks than conventional NSAIDs.

The researchers concluded that H2S-releasing NSAIDs appear to represent a promising alternative to existing therapies for the treatment of inflammation and pain. Future research will focus on the potential cardiovascular benefits of these drugs.

Antibe Therapeutics was founded by Wallace in 2004. The company specializes in developing hydrogen sulfide-releasing drugs to treat inflammatory disorders.

About McMaster University

McMaster University, one of four Canadian universities listed among the Top 100 universities in the world, is renowned for its innovation in both learning and discovery. It has a student population of 23,000, and more than 140,000 alumni in 128 countries.

For more information, please contact:

Veronica McGuire
Media Relations Coordinator
Faculty of Health Sciences
McMaster University
905-525-9140, ext. 22169
vmcguir@mcmaster.ca

Veronica McGuire | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>