Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic Researchers Building Melanoma Vaccine to Combat Skin Cancer

21.03.2012
Mayo Clinic researchers have trained mouse immune systems to eradicate skin cancer from within, using a genetic combination of human DNA from melanoma cells and a cousin of the rabies virus.

The strategy, called cancer immunotherapy, uses a genetically engineered version of the vesicular stomatitis virus to deliver a broad spectrum of genes derived from melanoma cancer cells directly into tumors. In early studies, 60 percent of tumor-burdened mice were cured in fewer than three months and with minimal side effects. Results of the latest study appear this week in the journal Nature Biotechnology.

“We believe that this new technique will help us to identify a whole new set of genes that encode antigens that are important in stimulating the immune system to reject cancer. In particular, we have seen that several proteins need to be expressed together to generate the most effective rejection of the tumors in mice,” says Richard Vile, Ph.D., a Mayo Clinic researcher in the Department of Molecular Medicine and a coauthor of the study, along with Jose Pulido, M.D., a Mayo Clinic ophthalmologist and ocular oncologist.

Dr. Vile’s success with melanoma adds to Mayo Clinic’s growing portfolio of experimental cancer vaccines, which includes an active clinical trial of vesicular stomatitis vaccines for liver cancers. Future studies could include similar vaccines for more aggressive cancers, such as lung, brain and pancreatic.

“I do believe we can create vaccines that will knock them off one by one,” Dr. Vile says. “By vaccinating against multiple proteins at once, we hope that we will be able to treat both the primary tumor and also protect against recurrence.”

The immune system functions on a seek-and-destroy platform and has fine-tuned its capacity to identify viral invaders such as vesicular stomatitis virus. Part of the appeal of building cancer vaccines from the whole spectrum of tumor DNA is that tumors can adapt to the repeated attacks of a healthy immune system and display fewer antigens (or signposts) that the immune system can identify.

Cancers can learn to hide from a normal immune system, but appear unable to escape an immune system trained by the vesicular stomatitis virus with the wide range of DNA used in the library approach.

“Nobody knows how many antigens the immune system can really see on tumor cells,” says Dr. Vile. “By expressing all of these proteins in highly immunogenic viruses, we increased their visibility to the immune system. The immune system now thinks it is being invaded by the viruses, which are expressing cancer-related antigens that should be eliminated.”

Much immunotherapy research has slowed because of researchers’ inability to isolate a sufficiently diverse collection of antigens in tumor cells. Tumors in these scenarios are able to mutate and reestablish themselves in spite of the body’s immune system.

The study was a Mayo collaboration with professors Alan Melcher and Peter Selby at the Leeds Institute of Molecular Medicine, University of Leeds, U.K. They were also co-authors.

Other coauthors of the article are Timothy Kottke; Jill Thompson; Feorillo Galivo, Ph.D; Rosa Maria Diaz; Diana Rommelfanger-Konkol; Elizabeth Ilett; and Larry Pease, Ph.D., all of Mayo Clinic; Hardev Pandha, M.D., University of Surrey, Guildford, U.K.; Phonphimon Wongthida, Ph.D., Department of Virology and Cell Technology at the National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand; and Kevin Harrington, Ph.D., Institute of Cancer Research, London, U.K.

The study was funded by the Richard M. Schulze Family Foundation, Mayo Clinic, Cancer Research UK, the National Institutes of Health, and a grant from Terry and Judith Paul.

About Mayo Clinic
Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit http://www.mayoclinic.org/about and www.mayoclinic.org/news.

Robert Nellis | Newswise Science News
Further information:
http://www.mayoclinic.org/news

More articles from Life Sciences:

nachricht A new molecular player involved in T cell activation
07.12.2018 | Tokyo Institute of Technology

nachricht News About a Plant Hormone
07.12.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>