Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic identifies 2 genes as potential therapeutic targets for multiple sclerosis

15.09.2009
Early research holds promise for new therapies and better prediction of patient outcomes

A Mayo Clinic study has found that two genes in mice were associated with good central nervous system repair in multiple sclerosis (MS).

These findings give researchers new hope for developing more effective therapies for patients with MS and for predicting MS patients' outcomes. This study will be presented at the Congress of the European Committee for Treatment and Research in Multiple Sclerosis in Dusseldorf, Germany, on Sept. 11, 2009.

"Most MS genetic studies have looked at disease susceptibility -- or why some people get MS and others do not," says Allan Bieber, Ph.D., a Mayo Clinic neuroscientist and author of this study. "This study asked, among those who have MS, why do some do well with the disease while others do poorly, and what might be the genetic determinants of this difference in outcome."

Mayo Clinic provides care for nearly 2,500 patients with MS each year. MS is a disease of the central nervous system that includes the brain, spinal cord and nerves. MS is called a demyelinating disease because it results from damage to myelin, the insulating covering of nerves. It occurs most commonly in those between the ages of 20 and 40, and is the most frequent neurological disorder in young adults in North America and Europe. Approximately 330,000 people in the United States have MS. Symptoms include loss of muscle coordination, strength, vision, balance and cognition.

Dr. Bieber and a team of Mayo Clinic researchers used two different strains of mice with a chronic, progressive MS-like disease. One strain progressed to paralysis and death. The other underwent the initial damage induction phase of the disease and then spontaneously repaired the damage to the central nervous system and retained most neurologic function. Using the powerful genetic mapping techniques that are available for mice, the team mapped two strong genetic determinants of good disease outcome.

"It's possible that the identification of these genes may provide the first important clue as to why some patients with MS do well, while others do not," says Dr. Bieber. "The genetic data indicates that good central nervous system repair results from stimulation of one genetic pathway and inhibition of another genetic pathway. While we're still in the early stages of this research, it could eventually lead to the development of useful therapies that stimulate or inhibit these genetic pathways in patients with MS."

According to Dr. Bieber, the research suggests that there may be a small number of strong genetic determinants for central nervous system repair following demyelinating disease, rather than a larger number of weak determinants.

"If that's true, it may be possible to map the most important genetic determinants of central nervous system repair in patients with MS and define a reparative genotype that could predict patients' outcomes," says Moses Rodriguez, M.D., a Mayo Clinic neurologist and director of Mayo Clinic's Center for Multiple Sclerosis and Central Nervous System Demyelinating Diseases Research and Therapeutics. "Such a diagnostic tool would be a great benefit to patients with MS and is consistent with the concepts of 'individualized medicine.'"

Also on the Mayo Clinic research team was Kanitta Suwansrinon, M.D.

About Mayo Clinic

Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,300 physicians, scientists and researchers and 46,000 allied health staff work at Mayo Clinic, which has sites in Rochester, Minn; Jacksonville, Fla; and Scottsdale/Phoenix, Ariz. Collectively, the three locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education, visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

Elizabeth Rice | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

Low bandwidth? Use more colors at once

17.08.2018 | Information Technology

Protecting the power grid: Advanced plasma switch for more efficient transmission

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>