Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic finds new genetic cause of neurodegeneration

02.05.2011
Mayo Clinic researchers have discovered two mutations responsible for a devastating neurological condition they first identified 15 years ago. The researchers say their study -- appearing in Nature Genetics -- has revealed a new neural pathway that may help understand a variety of similar conditions.

"We were able to do this now because of Next Generation genomic sequencing technology," says Christopher Klein, M.D., Mayo Clinic neurologist and lead author of the study. "We also had the invaluable help of our international collaborators who helped identify additional extended families with this condition, making the extensive genetic data available to us."

Called hereditary sensory and autonomic neuropathy type 1 (HSAN1) with dementia and hearing loss, its symptoms begin to appear in the young adult years -- 20 to 35 -- after which an individual's cognitive ability, hearing and ability to sense limbs deteriorate slowly. There is no treatment or cure. It was first identified and described by Peter Dyck, M.D., a senior Mayo neurologist and co-author of this current paper.

In addition to the original family studied by Dr. Dyck, Dr. Klein's team focused on DNA samples and data from three other family groups spanning the United States, Japan, the United Kingdom (U.K.) and Australia (the U.K. and Australian individuals are one family and the other U.S. family makes up the four). In addition to NextGen sequencing and subsequent bioinformatics studies, team members conducted intracellular and methylation studies. Ultimately, they discovered the mutations on the DNMT1 area cause misfolding of the enzyme, decreased enzyme activity and loss of chromatin binding. They also showed that even moderate alterations in methylation can disrupt normal neural functions, "suggesting that DNMT1 is part of a precise mechanism of dynamic regulation of the nervous system."

Because the condition worsens with age, the researchers say its effect is cumulative and epigenetic. That is, it directly alters the genome after birth.

While the findings offer no immediate treatment for the affected families, the discovery does provide a much greater understanding of how the disease functions, and directions for future research in neurodegeneration.

The study was funded by the National Institutes of Health and the Muscular Dystrophy Association. The collaborators include Maria-Victoria Botuyan, Ph.D.; Yanhong Wu; Christopher Ward M.B., Ch.B., Ph.D.; Julie Cunningham, Ph.D.; Glenn Smith, Ph.D.; Elizabeth Atkinson; Sumit Middha; William Litchy, M.D.; James Dyck, M.D.; Joseph Parisi, M.D.; Lisa Boardman, M.D.; Georges Mer, Ph.D.; David Smith, Ph.D.; and Peter Dyck, M.D., the Roy E. and Merle Meyer Professor of Neuroscience; all of Mayo Clinic; Garth Nicholson, M.B.B.S., Ph.D., University of Sydney; Simon Hammans, M.D., National Health Service Trust, Southampton, U.K.; Kaori Hojo, M.D., and Hiromitch Yamanishi, M.D., Harima Sanitorium, Japan; Adam Karpf, Ph.D., Roswell Park Cancer Institute, Buffalo, N.Y.; Douglas Wallace, Ph.D., and Mariella Simon, University of California, Irvine; Cecilie Lander, M.D., Queensland Health, Herston, Australia; and Benjamin Boes, Ph.D., Roche Applied Science Genomic Sequencing, Indianapolis.

About Mayo Clinic

Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit www.mayoclinic.org/about/ and www.mayoclinic.org/news.

VIDEO ALERT: Additional audio and video resources, including excerpts from an interview with Dr. Christopher Klein, are available on the Mayo Clinic News Blog(http://newsblog.mayoclinic.org/2011/04/29/mayo-clinic-finds-new-genetic-cause-of-neurodegeneration/). The password for this post is HSAN1.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: DNA samples Dnmt1 HSAN1 Mayo Neurodegeneration health services mutations

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>