Massive endocytosis in cells

This massive endocytosis (“MEND”) can be elicited in a variety of cell types with a range of different experimental manipulations, including internal calcium transients in the presence of ATP, membrane treatment with sphingomyelinase, and introduction of various amphiphiles into the membrane bilayer.

MEND does not employ the canonical endocytic mechanisms involving clathrin, the actin cytoskeleton or dynamins. MEND preferentially causes endocytosis of the low-ordered, cholesterol-containing membrane fraction. The mechanisms underlying MEND likely include the merger of nanoscopic low-ordered domains into larger domains with attendant changes in lipid line tension.

Application of MEND promises to serve as a valuable tool in determining which membrane proteins are associated with low- or high-ordered membrane fractions.

About The Journal of General Physiology Founded in 1918, The Journal of General Physiology (JGP) is published by The Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists. JGP content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jgp.org.

Fine, M., et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.201010469
Hilgemann, D.W., and M. Fine. 2011 J. Gen. Physiol. doi:10.1085/jgp.201010470
Lariccia, V., et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.201010468

Media Contact

Rita Sullivan EurekAlert!

More Information:

http://www.rupress.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors