Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maryland Researchers Take Aim at Avian Flu Vaccine

16.12.2008
Researchers at the University of Maryland are hot on the trail of a universal flu vaccine for animals - which could ultimately help prevent or delay another avian flu pandemic in humans.

A University of Maryland-led science team has developed a universal influenza vaccine for animals that may help prevent or delay another human flu pandemic.

Led by Daniel Perez, a University of Maryland associate professor and virologist, the team has developed a vaccine component that can be used to immunize both birds and mammals from dangerous forms of the flu, including the highly lethal H5N1 avian influenza strain.

This new universal influenza component promises to make it much easier to create a human vaccine capable of protecting humans against lethal avian bird flu strains. In addition, it can be used to vaccinate wild and domestic birds or other species, thus reducing the spread of flu viruses among these populations and decreasing the chance that deadly new human flu strains will spring from these animal reservoirs.

"We now have a vaccine that works in many animal species and can protect against any type of influenza that we want," Perez said, who does his research at the College Park campus of the Virginia Maryland Regional College of Veterinary Medicine (Avian Flu Virus Program).

FROM VIRUS TO VACCINE

The vaccine for a virus is derived from the virus. The vaccine mimics the presence of the virus without causing disease, priming the body's immune system to recognize and fight against the virus. The immune system produces antibodies against the vaccine that remain in the system until they are needed. If that virus, or in some case a closely similar one is later introduced into the system, those antibodies attach to viral particles and remove them before they have time to replicate, preventing or lessening symptoms of the virus.

Perez and his team used genes from the avian flu virus H9N2 to create a live, weakened flu vaccine. This type of vaccine consists of a living but weakened form of a virus that is generally harmless.

"H9N2 is another avian influenza virus with a broad host range. It can infect both birds and mammals," Perez said. "We wanted to try to use the backbone of that virus to create a live but weakened form of the virus and make a one-size-fits-all universal vaccine."

They isolated genes from the H9N2 virus to make up a "backbone" that consists of internal genes common to other flu strains. The backbone can be used as a starting point from which to quickly create other live, weakened flu vaccines because it can be genetically modified at the surface to resemble particular flu viruses for the purposes of vaccination.

"We can attach any surface proteins to this backbone to make a vaccine specific for almost any another influenza virus," Perez said.

Most currently used vaccines offer protection for a specific animal species against a small range of virus strains. These vaccines take a long time to make (about six months for a vaccine tailored for humans) and they generally cannot be shared between species.

An Impending Human Influenza Pandemic

Avian flu viruses are so lethal to humans because they are structurally different from human strains. The human immune system does not recognize these viruses and therefore cannot defend the body against them. Because there is little natural immunity to these strains of viruses in humans, a pandemic would likely result if one of these avian flu viruses mutated to spread easily among humans. Because of increased international travel, such a virus would likely spread more easily and quickly than in past influenza pandemics.

Some avian influenza strains, including the H5N1 and H9N2 strains have shown a limited ability to infect humans who have direct contact with birds, but these virus strains cannot be easily transmitted from human to human. However, 50 percent of humans recently infected with the H5N1 strain have died, sparking growing concern among world health officials about the potential for this strain to cause a human pandemic.

The Centers for Disease Control (CDC) says another strain of bird flu virus could mutate and become easily transmissible between humans, causing another pandemic. However, no one knows which influenza strain will undergo such a mutation. The H5N1 avian flu virus has recently caused an influenza pandemic in wild and domestic birds in Eurasian and African countries, and may be a likely candidate.

"In case of pandemic influenza, we will need a vaccine, but we cannot tell ahead of time what the virus is going to look like," Perez said. "We may prepare a vaccine before the pandemic occurs, but we don't know if that vaccine is going to be good enough."

A universal backbone that could immunize many different animal species, like the one that Dr. Perez has proposed, could be modified quickly to create a vaccine for a specific virus.

"A vaccine from this backbone could be deployed much faster than one specifically tailored to humans, because the vaccine would be already available for other animals. All we would have to do is modify it, grow it, and use it in humans. We would not have to remake it from scratch," he said.

NEXT STEPS

Perez and his team have already shown that a vaccine consisting of a weakened form of the H9N2 virus is capable of protecting chickens, their eggs and mice against two other lethal forms of the flu virus, including the highly lethal H5N1 avian flu. This vaccine could be administered to immunize wild and domestic birds against avian flu to minimize spread to humans.

Next they will test the vaccine in other mammals like pigs and ferrets, good models for the human immune system.

While it may be several years before scientists like Perez create an effective vaccine to protect humans against lethal H5N1 or other lethal avian bird flu strains, the universal influenza backbone will make the eventual creation of that vaccine much easier.

Dave Ottalini | Newswise Science News
Further information:
http://www.umd.edu

More articles from Life Sciences:

nachricht Princeton researchers explore how a carbon-fixing organelle forms via phase separation
13.09.2019 | Princeton University

nachricht The working of a molecular string phone
13.09.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>