Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New marker, new target in Ewing’s sarcoma

02.07.2012
Ewing’s sarcoma is a bone cancer commonly diagnosed in about 250 U.S. teenagers per year. If early chemotherapy is effective, improvement can be durable. But for children and teens who respond poorly to a first attempt at chemotherapy or if the disease spreads, long-term survival can be less than 10 percent.
A University of Colorado Cancer Center study published this week in the journal Molecular Cancer Research shows an important difference that may explain why some respond and some don’t: the existence of high levels of the protein EYA3.

“First, levels of EYA3 could be a tool in offering an accurate prognosis and choosing how aggressively to treat Ewing’s Sarcoma, and second we hope that by lowering levels of EYA3, we could help increase the effectiveness of existing therapies for Ewing’s sarcoma,” says Tyler Robin, PhD, first author of the recent paper.

Researchers recently defined the role of EYA3 as a DNA repair molecule and Tyler showed that EYA3 has a similar repair role in Ewing’s sarcoma – high levels of EYA3 help the tissue survive during and recover after treatment with chemotherapy. Importantly, when Robin knocked down EYA3 in Ewing’s sarcoma cells, they became sensitized to chemotherapy.

“The genetic mutation that creates Ewing’s sarcoma also leads to high levels of EYA3,” says Heide Ford, PhD, investigator at the CU Cancer Center and associate professor in the CU School of Medicine department of ob/gyn, and the paper’s senior author.

The mutation Ford refers to and that creates Ewing’s sarcoma is the fusion of a gene from chromosome 22 to a gene in chromosome 11. Known as a EWS/FLI translocation, this mutation turns off a cell’s ability to make another, intermediate step known as miR-708 – a molecule that helps to decide what parts of the genome do and don’t get read and manufactured into proteins. In healthy tissue, miR-708 turns off the production of EYA3; in Ewing’s sarcoma, miR-708 is down and so EYA3 is up.

“Our next step is to test small molecule inhibitors against EYA3 to determine which inhibitors best sensitize Ewing’s sarcomas to chemotherapy,” says Ford.

Robin and Ford hope that recognizing EYA3 levels, reducing these levels directly, or intervening in the steps that lead to its over-production will help predict outcomes, make decisions about existing treatments, and eventually lead to new treatments for Ewing’s sarcoma.
Funding provided by National Cancer Institute ROICA095277 and F30-CA165873. This work was also supported by The Cancer League of Colorado (PN090325) from grants from the Department of Defense Breast Cancer Research Program

University of Colorado Cancer Center researchers hope that study identifying high levels of the protein EYA3 in Ewing’s sarcoma will lead to more accurate prognosis and eventually improved treatments for the disease, as seen in this MRI of a patient’s left hip. Image: cc license

(W81XWH-10-1-0296) and from the Alex’s Lemonade Stand Foundation for Childhood Cancer and the Boettcher Foundation’s Webb-Waring Biomedical Research Program

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>