Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New marker substance for cancer cells

05.07.2013
Scientists from ETH Zurich have developed a new substance that enables certain tumour types to be rendered visible in high resolution using positron emission tomography. The so-called tracer has successfully been tested in mice. Now the researchers are planning clinical trials in humans.

Imaging techniques in cancer medicine provide far more than merely information on the scale and location of cancerous ulcers. There are modern methods that additionally characterise the tumour cells precisely, for instance by specific molecules they carry on their surface. Such additional information gives doctors key clues as to the precise cancer type and enables them to predict the probability that a patient will respond to a particular form of therapy.

Positron emission tomography (PET) is one such technique. Unlike with computed tomography or magnetic resonance imaging, PET does not render the body tissue visible, but rather radioactively marked molecules – known as tracers – inside the body, which are injected into the patient’s bloodstream prior to the scan. Based on the lock-and-key principle, they adhere to certain molecules on the cell surface. Through the radioactive radiation, specifically cell tissue with these surface molecules is visible on the PET scan.

Researchers from ETH Zurich, the Paul Scherrer Institute and company Merck Millipore have now developed a new tracer for PET that binds to the folic acid receptor. This receptor is interesting because it accumulates on the cell surface in many cancer types. The PET scan provides information on the size and location of the tumour and the density of the folic acid receptors on the cell surface.

World’s first clinical trial

The team of researchers headed by Simon Ametamey and Roger Schibli, both professors at the Institute of Pharmaceutical Sciences at ETH Zurich, have successfully tested their new substance in mice with cervical tumours. In a next step, the scientists now want to study whether the substance proves equally successful in humans. A pilot study on patients with ovarian, lung and intestinal cancer in several Swiss hospitals, including University Hospital Zurich, is in preparation. It will be the first clinical trial on a folic acid receptor marker for PET on patients.

If the substance proves suitable, the scientists would like to use it to predict the efficacy of chemotherapy in the future. They primarily have a new generation of cancer medication in mind that also binds to the folic acid receptor, which then channels the drug into the cancer cells, where it unfolds its therapeutic effect.

Personalised medicine

“Our PET tracer provides important additional information for this targeted therapeutic approach with cytotoxic substances,” says Ametamey. After all, one difficulty with the new form of therapy is that not in all patients the cancer cells carry the folic acid receptor. In the case of ovarian, cervical and brain tumours, it is nine out of ten patients, with lung cancer around three quarters and with breast cancer about half. In patients without the receptor, the novel chemotherapy is ineffective.

With the aid of the new technique, it could be possible to predict whether a patient will respond to such treatment. Patients whose tumours do not have any folic acid receptors could be spared this therapy and its side effects. Moreover, physicians can use the new PET tracer to better monitor the progress of the therapy and study whether the tumour is shrinking.

Making inflammations visible

However, the new PET tracer is not just interesting for cancer medicine, but also just the ticket for displaying inflammatory responses in the body. After all, the folic acid receptor occurs also at the surface of certain cells of the immune system, the macrophages, and only if these are in a so-called activated state during an inflammatory response. The new marker substance could thus be used to display inflammatory diseases such as arteriosclerosis, arthritis or inflammatory bowel diseases with PET.

Moreover, a third area of application is also imaginable for the substance: medication development. “If we’ve got a method to detect chronic inflammatory responses in a non-invasive way, we can test the efficacy of anti-inflammatory medication more effectively,” explains Schibli.

Only lab in Switzerland

The work with the radioactive PET marker substance poses special challenges in terms of lab infrastructure. ETH Zurich is home to the only lab in Switzerland to possess the facilities for the development of new radioactive substances and at the same time meet the demands to produce such substances for use in clinical trials on humans. The key is to manufacture the molecules at high purity levels and in sufficient amounts. PET tracers cannot be stored since the radioactive isotope Fluorine-18 used in the study degrades rapidly (it has a half-life of less than two hours). Consequently, the researchers developed a non-radioactive precursor molecule to which they can add the radioactive Fluorine-18 at the last minute. The end product has to be transported to the patient immediately after production and quality control.

Literature reference

Betzel T, Müller C, Groehn V, Müller A, Reber J, Fischer CR, Krämer SD, Schibli R, Ametamey SM: Radiosynthesis and Preclinical Evaluation of 3‘-Aza-2‘-[18F]fluorofolic Acid: A Novel PET Radiotracer for Folate Receptor Targeting. Bioconjugate Chemistry, 2013, 24, 205-214. DOI: 10.1021/bc300483a

Roger Schibli | EurekAlert!
Further information:
http://www.ethz.ch

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>