Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New marker found for Sanfilippo disease

01.03.2011
UC San Diego research helps illuminate rare but devastating metabolic disorder

Sanfilippo disease is a rare disorder caused by the failure of enzymes to break down specific kinds of complex carbohydrates, resulting in their accumulation in cells and often severe physical and neurological problems – and sometimes early death.

In a paper published in the March 4 issue of the Journal of Biological Chemistry, researchers at the University of California, San Diego School of Medicine, led by Jeffrey D. Esko, PhD, professor in the Department of Cellular and Molecular Medicine, describe the build-up of a novel secondary metabolite in Sanfilippo disease, a discovery that could improve understanding of the disease's pathology and refine diagnostic techniques.

Sanfilippo is one of a group of genetically inherited metabolic disorders called mucopolysaccharidoses, all of which involve the inability of different lysosomal enzymes to catabolize or break down glycosaminoglycans – complex sugar carbohydrates that help cells build skin, bone, cartilage, tendons and connective tissues.

"It's a very ordered sequence of degradation," said Esko, co-director of the Glycobiology Research and Training Center at UC San Diego. "Interference with any of the steps in the enzymatic process results in an accumulation of metabolites, which causes lyosomal dysfunction. Cells become constipated, leading to internal changes and dysfunction."

For patients with severe mucopolysaccharidosis, the consequences can be catastrophic. As incompletely degraded glycosaminoglycans accumulate in cells and tissues, they cause permanent, progressive damage that affects appearance, physical abilities, organ function and, most profoundly, mental development. Children with the disease can experience severe neuropathology and significant early mortality. It's estimated that 1 in 25,000 children in the United States have one of several forms of the disease. Some mucopolysaccharidoses can be temporarily treated with enzyme replacement therapies, but the body's blood-brain barrier blocks neurological benefit. There is no current cure.

"The three approved drugs on the market mask the genetic defect by supplementing the missing enzymes," said Esko. "They can help resolve storage in many organs, but not the brain because the enzymes do not cross the barrier. And they are very, very expensive."

In the new research, Esko and colleague William C. Lamanna, PhD, studied enzymatic activity in Sanfilippo patient fibroblasts, a type of cell most commonly found in connective tissues. They noted that defective enzymatic activity resulted in the accumulation of not just a glycosaminoglycan called heparan sulfate, but also a secondary metabolite called dermatan sulfate. Sanfilippo cells had levels of dermatan sulfate two- to five-fold higher than normal.

The combined accumulation of heparan sulfate with dermatan sulfate, researchers said, may explain some of the distinct pathological features of Sanfilippo disease. The emergence of dermatan sulfate as an additional biomarker for Sanfilippo disease could be useful in detection and diagnosis, though Esko said studies using patient tissue biopsies or blood or urine samples remain to be conducted.

"Right now, this discovery probably won't change the current therapy for Sanfilippo" said Lamanna, "but it does improve what we know about how the disease works and how to diagnose it."

The work follows related research published in 2010 in Molecular Therapy by Esko, Yitzhak Tor, PhD, UCSD Department of Chemistry and Biochemistry and Moores Cancer Center and colleagues that described a new type of targeting process for delivering modified enzymes to cells.

Co-authors of the JBC paper are Roger Lawrence and Stephane Sarrazin, both from the UCSD Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>